![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uneqri | Structured version Visualization version GIF version |
Description: Inference from membership to union. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
uneqri.1 | ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) |
Ref | Expression |
---|---|
uneqri | ⊢ (𝐴 ∪ 𝐵) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 3786 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
2 | uneqri.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) | |
3 | 1, 2 | bitri 264 | . 2 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐶) |
4 | 3 | eqriv 2648 | 1 ⊢ (𝐴 ∪ 𝐵) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∨ wo 382 = wceq 1523 ∈ wcel 2030 ∪ cun 3605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-un 3612 |
This theorem is referenced by: unidm 3789 uncom 3790 unass 3803 dfun2 3892 undi 3907 unab 3927 un0 4000 inundif 4079 |
Copyright terms: Public domain | W3C validator |