MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uneqdifeq Structured version   Visualization version   GIF version

Theorem uneqdifeq 4090
Description: Two ways to say that 𝐴 and 𝐵 partition 𝐶 (when 𝐴 and 𝐵 don't overlap and 𝐴 is a part of 𝐶). (Contributed by FL, 17-Nov-2008.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
uneqdifeq ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 ↔ (𝐶𝐴) = 𝐵))

Proof of Theorem uneqdifeq
StepHypRef Expression
1 uncom 3790 . . . . 5 (𝐵𝐴) = (𝐴𝐵)
2 eqtr 2670 . . . . . . 7 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → (𝐵𝐴) = 𝐶)
32eqcomd 2657 . . . . . 6 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → 𝐶 = (𝐵𝐴))
4 difeq1 3754 . . . . . . 7 (𝐶 = (𝐵𝐴) → (𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴))
5 difun2 4081 . . . . . . 7 ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)
6 eqtr 2670 . . . . . . . 8 (((𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴) ∧ ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)) → (𝐶𝐴) = (𝐵𝐴))
7 incom 3838 . . . . . . . . . . 11 (𝐴𝐵) = (𝐵𝐴)
87eqeq1i 2656 . . . . . . . . . 10 ((𝐴𝐵) = ∅ ↔ (𝐵𝐴) = ∅)
9 disj3 4054 . . . . . . . . . 10 ((𝐵𝐴) = ∅ ↔ 𝐵 = (𝐵𝐴))
108, 9bitri 264 . . . . . . . . 9 ((𝐴𝐵) = ∅ ↔ 𝐵 = (𝐵𝐴))
11 eqtr 2670 . . . . . . . . . . 11 (((𝐶𝐴) = (𝐵𝐴) ∧ (𝐵𝐴) = 𝐵) → (𝐶𝐴) = 𝐵)
1211expcom 450 . . . . . . . . . 10 ((𝐵𝐴) = 𝐵 → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
1312eqcoms 2659 . . . . . . . . 9 (𝐵 = (𝐵𝐴) → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
1410, 13sylbi 207 . . . . . . . 8 ((𝐴𝐵) = ∅ → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
156, 14syl5com 31 . . . . . . 7 (((𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴) ∧ ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
164, 5, 15sylancl 695 . . . . . 6 (𝐶 = (𝐵𝐴) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
173, 16syl 17 . . . . 5 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
181, 17mpan 706 . . . 4 ((𝐴𝐵) = 𝐶 → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
1918com12 32 . . 3 ((𝐴𝐵) = ∅ → ((𝐴𝐵) = 𝐶 → (𝐶𝐴) = 𝐵))
2019adantl 481 . 2 ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 → (𝐶𝐴) = 𝐵))
21 simpl 472 . . . . . 6 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → 𝐴𝐶)
22 difssd 3771 . . . . . . . 8 ((𝐶𝐴) = 𝐵 → (𝐶𝐴) ⊆ 𝐶)
23 sseq1 3659 . . . . . . . 8 ((𝐶𝐴) = 𝐵 → ((𝐶𝐴) ⊆ 𝐶𝐵𝐶))
2422, 23mpbid 222 . . . . . . 7 ((𝐶𝐴) = 𝐵𝐵𝐶)
2524adantl 481 . . . . . 6 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → 𝐵𝐶)
2621, 25unssd 3822 . . . . 5 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → (𝐴𝐵) ⊆ 𝐶)
27 eqimss 3690 . . . . . . 7 ((𝐶𝐴) = 𝐵 → (𝐶𝐴) ⊆ 𝐵)
28 ssundif 4085 . . . . . . 7 (𝐶 ⊆ (𝐴𝐵) ↔ (𝐶𝐴) ⊆ 𝐵)
2927, 28sylibr 224 . . . . . 6 ((𝐶𝐴) = 𝐵𝐶 ⊆ (𝐴𝐵))
3029adantl 481 . . . . 5 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → 𝐶 ⊆ (𝐴𝐵))
3126, 30eqssd 3653 . . . 4 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → (𝐴𝐵) = 𝐶)
3231ex 449 . . 3 (𝐴𝐶 → ((𝐶𝐴) = 𝐵 → (𝐴𝐵) = 𝐶))
3332adantr 480 . 2 ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐶𝐴) = 𝐵 → (𝐴𝐵) = 𝐶))
3420, 33impbid 202 1 ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 ↔ (𝐶𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  cdif 3604  cun 3605  cin 3606  wss 3607  c0 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949
This theorem is referenced by:  fzdifsuc  12438  hashbclem  13274  lecldbas  21071  conndisj  21267  ptuncnv  21658  ptunhmeo  21659  cldsubg  21961  icopnfcld  22618  iocmnfcld  22619  voliunlem1  23364  icombl  23378  ioombl  23379  uniioombllem4  23400  ismbf3d  23466  lhop  23824  subfacp1lem3  31290  subfacp1lem5  31292  pconnconn  31339  cvmscld  31381
  Copyright terms: Public domain W3C validator