![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uneq1i | Structured version Visualization version GIF version |
Description: Inference adding union to the right in a class equality. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
uneq1i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | uneq1 3793 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∪ cun 3605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-un 3612 |
This theorem is referenced by: un12 3804 unundi 3807 undif1 4076 dfif5 4135 tpcoma 4317 qdass 4320 qdassr 4321 tpidm12 4322 symdifv 4630 unidif0 4868 difxp2 5595 resasplit 6112 fresaun 6113 fresaunres2 6114 df2o3 7618 sbthlem6 8116 fodomr 8152 domss2 8160 domunfican 8274 kmlem11 9020 hashfun 13262 prmreclem2 15668 setscom 15950 gsummptfzsplitl 18379 uniioombllem3 23399 lhop 23824 ex-un 27411 ex-pw 27416 indifundif 29482 bnj1415 31232 subfacp1lem1 31287 dftrpred4g 31858 lineunray 32379 bj-2upln1upl 33137 poimirlem3 33542 poimirlem4 33543 poimirlem5 33544 poimirlem16 33555 poimirlem17 33556 poimirlem19 33558 poimirlem20 33559 poimirlem22 33561 dfrcl2 38283 iunrelexp0 38311 trclfvdecomr 38337 corcltrcl 38348 cotrclrcl 38351 df3o2 38639 fourierdlem80 40721 caragenuncllem 41047 carageniuncllem1 41056 1fzopredsuc 41659 nnsum4primeseven 42013 nnsum4primesevenALTV 42014 lmod1 42606 |
Copyright terms: Public domain | W3C validator |