Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  undif4 Structured version   Visualization version   GIF version

Theorem undif4 4177
 Description: Distribute union over difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
undif4 ((𝐴𝐶) = ∅ → (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶))

Proof of Theorem undif4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm2.621 882 . . . . . . 7 ((𝑥𝐴 → ¬ 𝑥𝐶) → ((𝑥𝐴 ∨ ¬ 𝑥𝐶) → ¬ 𝑥𝐶))
2 olc 855 . . . . . . 7 𝑥𝐶 → (𝑥𝐴 ∨ ¬ 𝑥𝐶))
31, 2impbid1 215 . . . . . 6 ((𝑥𝐴 → ¬ 𝑥𝐶) → ((𝑥𝐴 ∨ ¬ 𝑥𝐶) ↔ ¬ 𝑥𝐶))
43anbi2d 614 . . . . 5 ((𝑥𝐴 → ¬ 𝑥𝐶) → (((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴 ∨ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶)))
5 eldif 3733 . . . . . . 7 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐶))
65orbi2i 896 . . . . . 6 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
7 ordi 985 . . . . . 6 ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴 ∨ ¬ 𝑥𝐶)))
86, 7bitri 264 . . . . 5 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴 ∨ ¬ 𝑥𝐶)))
9 elun 3904 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
109anbi1i 610 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∧ ¬ 𝑥𝐶))
114, 8, 103bitr4g 303 . . . 4 ((𝑥𝐴 → ¬ 𝑥𝐶) → ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥𝐶)))
12 elun 3904 . . . 4 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
13 eldif 3733 . . . 4 (𝑥 ∈ ((𝐴𝐵) ∖ 𝐶) ↔ (𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥𝐶))
1411, 12, 133bitr4g 303 . . 3 ((𝑥𝐴 → ¬ 𝑥𝐶) → (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ 𝐶)))
1514alimi 1887 . 2 (∀𝑥(𝑥𝐴 → ¬ 𝑥𝐶) → ∀𝑥(𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ 𝐶)))
16 disj1 4162 . 2 ((𝐴𝐶) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐶))
17 dfcleq 2765 . 2 ((𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶) ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴𝐵) ∖ 𝐶)))
1815, 16, 173imtr4i 281 1 ((𝐴𝐶) = ∅ → (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 382   ∨ wo 834  ∀wal 1629   = wceq 1631   ∈ wcel 2145   ∖ cdif 3720   ∪ cun 3721   ∩ cin 3722  ∅c0 4063 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-nul 4064 This theorem is referenced by:  phplem1  8295  infdifsn  8718  difico  29885  caratheodorylem1  41260
 Copyright terms: Public domain W3C validator