![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undif | Structured version Visualization version GIF version |
Description: Union of complementary parts into whole. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
undif | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn1 3924 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
2 | undif2 4186 | . . 3 ⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) | |
3 | 2 | eqeq1i 2763 | . 2 ⊢ ((𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
4 | 1, 3 | bitr4i 267 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1630 ∖ cdif 3710 ∪ cun 3711 ⊆ wss 3713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ral 3053 df-rab 3057 df-v 3340 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 |
This theorem is referenced by: raldifeq 4201 difsnid 4484 fveqf1o 6718 ralxpmap 8071 undifixp 8108 dfdom2 8145 sbthlem5 8237 sbthlem6 8238 domunsn 8273 fodomr 8274 mapdom2 8294 limensuci 8299 findcard2 8363 unfi 8390 marypha1lem 8502 brwdom2 8641 infdifsn 8725 ackbij1lem12 9243 ackbij1lem18 9249 ssfin4 9322 fin23lem28 9352 fin23lem30 9354 fin1a2lem13 9424 canthp1lem1 9664 xrsupss 12330 xrinfmss 12331 hashssdif 13390 hashfun 13414 hashf1lem2 13430 fsumless 14725 incexclem 14765 incexc 14766 fprodsplit1f 14918 pwssplit1 19259 frlmsslss2 20314 mdetdiaglem 20604 mdetrlin 20608 mdetrsca 20609 mdetralt 20614 smadiadet 20676 isclo 21091 cmpcld 21405 rrxcph 23378 rrxdstprj1 23390 uniiccmbl 23556 itgss3 23778 dchreq 25180 axlowdimlem7 26025 axlowdimlem10 26028 padct 29804 resf1o 29812 fprodeq02 29876 locfinref 30215 indval2 30383 esummono 30423 gsumesum 30428 sigaclfu2 30491 measxun2 30580 measvuni 30584 measssd 30585 pmeasmono 30693 eulerpartlemt 30740 tgoldbachgtde 31045 noextendseq 32124 poimirlem9 33729 poimirlem15 33735 poimirlem25 33745 diophrw 37822 eldioph2lem1 37823 eldioph2lem2 37824 kelac1 38133 fsumsplit1 40305 ioccncflimc 40599 icocncflimc 40603 dirkercncflem2 40822 dirkercncflem3 40823 sge0ss 41130 meassle 41181 meadif 41197 meaiininclem 41204 isomenndlem 41248 hspmbllem1 41344 hspmbllem2 41345 ovolval4lem1 41367 fsumsplitsndif 41851 |
Copyright terms: Public domain | W3C validator |