![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > undefval | Structured version Visualization version GIF version |
Description: Value of the undefined value function. Normally we will not reference the explicit value but will use undefnel 7561 instead. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
undefval | ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) = 𝒫 ∪ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3340 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
2 | uniexg 7108 | . . 3 ⊢ (𝑆 ∈ 𝑉 → ∪ 𝑆 ∈ V) | |
3 | pwexg 4987 | . . 3 ⊢ (∪ 𝑆 ∈ V → 𝒫 ∪ 𝑆 ∈ V) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝒫 ∪ 𝑆 ∈ V) |
5 | unieq 4584 | . . . 4 ⊢ (𝑠 = 𝑆 → ∪ 𝑠 = ∪ 𝑆) | |
6 | 5 | pweqd 4295 | . . 3 ⊢ (𝑠 = 𝑆 → 𝒫 ∪ 𝑠 = 𝒫 ∪ 𝑆) |
7 | df-undef 7556 | . . 3 ⊢ Undef = (𝑠 ∈ V ↦ 𝒫 ∪ 𝑠) | |
8 | 6, 7 | fvmptg 6430 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝒫 ∪ 𝑆 ∈ V) → (Undef‘𝑆) = 𝒫 ∪ 𝑆) |
9 | 1, 4, 8 | syl2anc 696 | 1 ⊢ (𝑆 ∈ 𝑉 → (Undef‘𝑆) = 𝒫 ∪ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1620 ∈ wcel 2127 Vcvv 3328 𝒫 cpw 4290 ∪ cuni 4576 ‘cfv 6037 Undefcund 7555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-iota 6000 df-fun 6039 df-fv 6045 df-undef 7556 |
This theorem is referenced by: undefnel2 7560 undefne0 7562 |
Copyright terms: Public domain | W3C validator |