MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncfval Structured version   Visualization version   GIF version

Theorem uncfval 17082
Description: Value of the uncurry functor, which is the reverse of the curry functor, taking 𝐺:𝐶⟶(𝐷𝐸) to uncurryF (𝐺):𝐶 × 𝐷𝐸. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfval.g 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
uncfval.c (𝜑𝐷 ∈ Cat)
uncfval.d (𝜑𝐸 ∈ Cat)
uncfval.f (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
Assertion
Ref Expression
uncfval (𝜑𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))

Proof of Theorem uncfval
Dummy variables 𝑓 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uncfval.g . 2 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
2 df-uncf 17063 . . . 4 uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
32a1i 11 . . 3 (𝜑 → uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1))))))
4 simprl 754 . . . . . . 7 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → 𝑐 = ⟨“𝐶𝐷𝐸”⟩)
54fveq1d 6334 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘1) = (⟨“𝐶𝐷𝐸”⟩‘1))
6 uncfval.c . . . . . . . 8 (𝜑𝐷 ∈ Cat)
7 s3fv1 13846 . . . . . . . 8 (𝐷 ∈ Cat → (⟨“𝐶𝐷𝐸”⟩‘1) = 𝐷)
86, 7syl 17 . . . . . . 7 (𝜑 → (⟨“𝐶𝐷𝐸”⟩‘1) = 𝐷)
98adantr 466 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (⟨“𝐶𝐷𝐸”⟩‘1) = 𝐷)
105, 9eqtrd 2805 . . . . 5 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘1) = 𝐷)
114fveq1d 6334 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘2) = (⟨“𝐶𝐷𝐸”⟩‘2))
12 uncfval.d . . . . . . . 8 (𝜑𝐸 ∈ Cat)
13 s3fv2 13847 . . . . . . . 8 (𝐸 ∈ Cat → (⟨“𝐶𝐷𝐸”⟩‘2) = 𝐸)
1412, 13syl 17 . . . . . . 7 (𝜑 → (⟨“𝐶𝐷𝐸”⟩‘2) = 𝐸)
1514adantr 466 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (⟨“𝐶𝐷𝐸”⟩‘2) = 𝐸)
1611, 15eqtrd 2805 . . . . 5 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘2) = 𝐸)
1710, 16oveq12d 6811 . . . 4 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → ((𝑐‘1) evalF (𝑐‘2)) = (𝐷 evalF 𝐸))
18 simprr 756 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → 𝑓 = 𝐺)
194fveq1d 6334 . . . . . . . 8 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘0) = (⟨“𝐶𝐷𝐸”⟩‘0))
20 uncfval.f . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
21 funcrcl 16730 . . . . . . . . . . . 12 (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
2220, 21syl 17 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
2322simpld 482 . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
24 s3fv0 13845 . . . . . . . . . 10 (𝐶 ∈ Cat → (⟨“𝐶𝐷𝐸”⟩‘0) = 𝐶)
2523, 24syl 17 . . . . . . . . 9 (𝜑 → (⟨“𝐶𝐷𝐸”⟩‘0) = 𝐶)
2625adantr 466 . . . . . . . 8 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (⟨“𝐶𝐷𝐸”⟩‘0) = 𝐶)
2719, 26eqtrd 2805 . . . . . . 7 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑐‘0) = 𝐶)
2827, 10oveq12d 6811 . . . . . 6 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → ((𝑐‘0) 1stF (𝑐‘1)) = (𝐶 1stF 𝐷))
2918, 28oveq12d 6811 . . . . 5 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (𝑓func ((𝑐‘0) 1stF (𝑐‘1))) = (𝐺func (𝐶 1stF 𝐷)))
3027, 10oveq12d 6811 . . . . 5 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → ((𝑐‘0) 2ndF (𝑐‘1)) = (𝐶 2ndF 𝐷))
3129, 30oveq12d 6811 . . . 4 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1))) = ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷)))
3217, 31oveq12d 6811 . . 3 ((𝜑 ∧ (𝑐 = ⟨“𝐶𝐷𝐸”⟩ ∧ 𝑓 = 𝐺)) → (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))) = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))
33 s3cli 13835 . . . 4 ⟨“𝐶𝐷𝐸”⟩ ∈ Word V
34 elex 3364 . . . 4 (⟨“𝐶𝐷𝐸”⟩ ∈ Word V → ⟨“𝐶𝐷𝐸”⟩ ∈ V)
3533, 34mp1i 13 . . 3 (𝜑 → ⟨“𝐶𝐷𝐸”⟩ ∈ V)
36 elex 3364 . . . 4 (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → 𝐺 ∈ V)
3720, 36syl 17 . . 3 (𝜑𝐺 ∈ V)
38 ovexd 6825 . . 3 (𝜑 → ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))) ∈ V)
393, 32, 35, 37, 38ovmpt2d 6935 . 2 (𝜑 → (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺) = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))
401, 39syl5eq 2817 1 (𝜑𝐹 = ((𝐷 evalF 𝐸) ∘func ((𝐺func (𝐶 1stF 𝐷)) ⟨,⟩F (𝐶 2ndF 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  Vcvv 3351  cfv 6031  (class class class)co 6793  cmpt2 6795  0cc0 10138  1c1 10139  2c2 11272  Word cword 13487  ⟨“cs3 13796  Catccat 16532   Func cfunc 16721  func ccofu 16723   FuncCat cfuc 16809   1stF c1stf 17017   2ndF c2ndf 17018   ⟨,⟩F cprf 17019   evalF cevlf 17057   uncurryF cuncf 17059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13495  df-concat 13497  df-s1 13498  df-s2 13802  df-s3 13803  df-func 16725  df-uncf 17063
This theorem is referenced by:  uncfcl  17083  uncf1  17084  uncf2  17085
  Copyright terms: Public domain W3C validator