![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uncdadom | Structured version Visualization version GIF version |
Description: Cardinal addition dominates union. (Contributed by NM, 28-Sep-2004.) |
Ref | Expression |
---|---|
uncdadom | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (𝐴 +𝑐 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4938 | . . . . 5 ⊢ ∅ ∈ V | |
2 | xpsneng 8206 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴) | |
3 | 1, 2 | mpan2 709 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × {∅}) ≈ 𝐴) |
4 | ensym 8166 | . . . 4 ⊢ ((𝐴 × {∅}) ≈ 𝐴 → 𝐴 ≈ (𝐴 × {∅})) | |
5 | endom 8144 | . . . 4 ⊢ (𝐴 ≈ (𝐴 × {∅}) → 𝐴 ≼ (𝐴 × {∅})) | |
6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ (𝐴 × {∅})) |
7 | 1on 7732 | . . . . 5 ⊢ 1𝑜 ∈ On | |
8 | xpsneng 8206 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 1𝑜 ∈ On) → (𝐵 × {1𝑜}) ≈ 𝐵) | |
9 | 7, 8 | mpan2 709 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (𝐵 × {1𝑜}) ≈ 𝐵) |
10 | ensym 8166 | . . . 4 ⊢ ((𝐵 × {1𝑜}) ≈ 𝐵 → 𝐵 ≈ (𝐵 × {1𝑜})) | |
11 | endom 8144 | . . . 4 ⊢ (𝐵 ≈ (𝐵 × {1𝑜}) → 𝐵 ≼ (𝐵 × {1𝑜})) | |
12 | 9, 10, 11 | 3syl 18 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ≼ (𝐵 × {1𝑜})) |
13 | xp01disj 7741 | . . . 4 ⊢ ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅ | |
14 | undom 8209 | . . . 4 ⊢ (((𝐴 ≼ (𝐴 × {∅}) ∧ 𝐵 ≼ (𝐵 × {1𝑜})) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅) → (𝐴 ∪ 𝐵) ≼ ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) | |
15 | 13, 14 | mpan2 709 | . . 3 ⊢ ((𝐴 ≼ (𝐴 × {∅}) ∧ 𝐵 ≼ (𝐵 × {1𝑜})) → (𝐴 ∪ 𝐵) ≼ ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) |
16 | 6, 12, 15 | syl2an 495 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) |
17 | cdaval 9180 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) | |
18 | 16, 17 | breqtrrd 4828 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (𝐴 +𝑐 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1628 ∈ wcel 2135 Vcvv 3336 ∪ cun 3709 ∩ cin 3710 ∅c0 4054 {csn 4317 class class class wbr 4800 × cxp 5260 Oncon0 5880 (class class class)co 6809 1𝑜c1o 7718 ≈ cen 8114 ≼ cdom 8115 +𝑐 ccda 9177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-ral 3051 df-rex 3052 df-rab 3055 df-v 3338 df-sbc 3573 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-int 4624 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-ord 5883 df-on 5884 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-1o 7725 df-er 7907 df-en 8118 df-dom 8119 df-cda 9178 |
This theorem is referenced by: cdadom3 9198 unnum 9210 ficardun2 9213 pwsdompw 9214 unctb 9215 infunabs 9217 infcda 9218 infdif 9219 |
Copyright terms: Public domain | W3C validator |