Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unbdqndv2 Structured version   Visualization version   GIF version

Theorem unbdqndv2 32829
Description: Variant of unbdqndv1 32826 with the hypothesis that (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) is unbounded where 𝑥𝐴 and 𝐴𝑦. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unbdqndv2.x (𝜑𝑋 ⊆ ℝ)
unbdqndv2.f (𝜑𝐹:𝑋⟶ℂ)
unbdqndv2.1 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
Assertion
Ref Expression
unbdqndv2 (𝜑 → ¬ 𝐴 ∈ dom (ℝ D 𝐹))
Distinct variable groups:   𝐴,𝑏,𝑑,𝑥,𝑦   𝐹,𝑏,𝑑,𝑥,𝑦   𝑋,𝑏,𝑑,𝑥,𝑦   𝜑,𝑏,𝑑,𝑥,𝑦

Proof of Theorem unbdqndv2
Dummy variables 𝑐 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . 3 (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴))) = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))
2 ax-resscn 10205 . . . 4 ℝ ⊆ ℂ
32a1i 11 . . 3 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → ℝ ⊆ ℂ)
4 unbdqndv2.x . . . 4 (𝜑𝑋 ⊆ ℝ)
54adantr 472 . . 3 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → 𝑋 ⊆ ℝ)
6 unbdqndv2.f . . . 4 (𝜑𝐹:𝑋⟶ℂ)
76adantr 472 . . 3 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → 𝐹:𝑋⟶ℂ)
8 breq1 4807 . . . . . . . . . . 11 (𝑏 = (2 · 𝑐) → (𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)) ↔ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
983anbi3d 1554 . . . . . . . . . 10 (𝑏 = (2 · 𝑐) → (((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) ↔ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
109rexbidv 3190 . . . . . . . . 9 (𝑏 = (2 · 𝑐) → (∃𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) ↔ ∃𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
1110rexbidv 3190 . . . . . . . 8 (𝑏 = (2 · 𝑐) → (∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) ↔ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
1211ralbidv 3124 . . . . . . 7 (𝑏 = (2 · 𝑐) → (∀𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) ↔ ∀𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
13 unbdqndv2.1 . . . . . . . 8 (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
1413ad2antrr 764 . . . . . . 7 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
15 2rp 12050 . . . . . . . . 9 2 ∈ ℝ+
1615a1i 11 . . . . . . . 8 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 2 ∈ ℝ+)
17 simprl 811 . . . . . . . 8 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑐 ∈ ℝ+)
1816, 17rpmulcld 12101 . . . . . . 7 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (2 · 𝑐) ∈ ℝ+)
1912, 14, 18rspcdva 3455 . . . . . 6 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∀𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
20 simprr 813 . . . . . 6 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑑 ∈ ℝ+)
21 rsp 3067 . . . . . 6 (∀𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) → (𝑑 ∈ ℝ+ → ∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))))
2219, 20, 21sylc 65 . . . . 5 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))
23 eqid 2760 . . . . . . . . . 10 if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)
245ad3antrrr 768 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑋 ⊆ ℝ)
257ad3antrrr 768 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝐹:𝑋⟶ℂ)
263, 7, 5dvbss 23884 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → dom (ℝ D 𝐹) ⊆ 𝑋)
27 simpr 479 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → 𝐴 ∈ dom (ℝ D 𝐹))
2826, 27sseldd 3745 . . . . . . . . . . . . 13 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → 𝐴𝑋)
2928adantr 472 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝐴𝑋)
3029adantr 472 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) → 𝐴𝑋)
3130adantr 472 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝐴𝑋)
3217ad2antrr 764 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑐 ∈ ℝ+)
3320ad2antrr 764 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑑 ∈ ℝ+)
34 simplrl 819 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑥𝑋)
35 simplrr 820 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑦𝑋)
36 simpr2r 1297 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑥𝑦)
37 simpr1l 1291 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝑥𝐴)
38 simpr1r 1293 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → 𝐴𝑦)
39 simpr2l 1295 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → (𝑦𝑥) < 𝑑)
40 simpr3 1238 . . . . . . . . . 10 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))
411, 23, 24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40unbdqndv2lem2 32828 . . . . . . . . 9 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → (if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦))))))
4241simpld 477 . . . . . . . 8 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) ∈ (𝑋 ∖ {𝐴}))
43 oveq1 6821 . . . . . . . . . . . 12 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (𝑤𝐴) = (if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴))
4443fveq2d 6357 . . . . . . . . . . 11 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (abs‘(𝑤𝐴)) = (abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)))
4544breq1d 4814 . . . . . . . . . 10 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → ((abs‘(𝑤𝐴)) < 𝑑 ↔ (abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑))
46 fveq2 6353 . . . . . . . . . . . 12 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → ((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤) = ((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)))
4746fveq2d 6357 . . . . . . . . . . 11 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤)) = (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦))))
4847breq2d 4816 . . . . . . . . . 10 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤)) ↔ 𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)))))
4945, 48anbi12d 749 . . . . . . . . 9 (𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) → (((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))) ↔ ((abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦))))))
5049adantl 473 . . . . . . . 8 ((((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) ∧ 𝑤 = if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)) → (((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))) ↔ ((abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦))))))
5141simprd 482 . . . . . . . 8 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → ((abs‘(if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦) − 𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘if((𝑐 · (𝑦𝑥)) ≤ (abs‘((𝐹𝑥) − (𝐹𝐴))), 𝑥, 𝑦)))))
5242, 50, 51rspcedvd 3456 . . . . . . 7 (((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) ∧ ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥)))) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))))
5352ex 449 . . . . . 6 ((((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤)))))
5453rexlimdvva 3176 . . . . 5 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → (∃𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ (2 · 𝑐) ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤)))))
5522, 54mpd 15 . . . 4 (((𝜑𝐴 ∈ dom (ℝ D 𝐹)) ∧ (𝑐 ∈ ℝ+𝑑 ∈ ℝ+)) → ∃𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))))
5655ralrimivva 3109 . . 3 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → ∀𝑐 ∈ ℝ+𝑑 ∈ ℝ+𝑤 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑤𝐴)) < 𝑑𝑐 ≤ (abs‘((𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))‘𝑤))))
571, 3, 5, 7, 56unbdqndv1 32826 . 2 ((𝜑𝐴 ∈ dom (ℝ D 𝐹)) → ¬ 𝐴 ∈ dom (ℝ D 𝐹))
5857pm2.01da 457 1 (𝜑 → ¬ 𝐴 ∈ dom (ℝ D 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  cdif 3712  wss 3715  ifcif 4230  {csn 4321   class class class wbr 4804  cmpt 4881  dom cdm 5266  wf 6045  cfv 6049  (class class class)co 6814  cc 10146  cr 10147   · cmul 10153   < clt 10286  cle 10287  cmin 10478   / cdiv 10896  2c2 11282  +crp 12045  abscabs 14193   D cdv 23846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fi 8484  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-fz 12540  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-plusg 16176  df-mulr 16177  df-starv 16178  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-rest 16305  df-topn 16306  df-topgen 16326  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-ntr 21046  df-cnp 21254  df-xms 22346  df-ms 22347  df-limc 23849  df-dv 23850
This theorem is referenced by:  knoppndv  32852
  Copyright terms: Public domain W3C validator