Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unb2ltle Structured version   Visualization version   GIF version

Theorem unb2ltle 39955
 Description: "Unbounded below" expressed with < and with ≤. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
unb2ltle (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
Distinct variable group:   𝑤,𝐴,𝑥,𝑦

Proof of Theorem unb2ltle
StepHypRef Expression
1 nfv 1883 . . . . . 6 𝑤 𝐴 ⊆ ℝ*
2 nfra1 2970 . . . . . 6 𝑤𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤
31, 2nfan 1868 . . . . 5 𝑤(𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤)
4 simpll 805 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → 𝐴 ⊆ ℝ*)
5 simpr 476 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
6 rspa 2959 . . . . . . 7 ((∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 < 𝑤)
76adantll 750 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 < 𝑤)
8 ssel2 3631 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
98ad4ant13 1315 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑦 ∈ ℝ*)
10 simpllr 815 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑤 ∈ ℝ)
1110rexrd 10127 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑤 ∈ ℝ*)
12 simpr 476 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑦 < 𝑤)
139, 11, 12xrltled 39800 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑦𝑤)
1413ex 449 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦 < 𝑤𝑦𝑤))
1514reximdva 3046 . . . . . . 7 ((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) → (∃𝑦𝐴 𝑦 < 𝑤 → ∃𝑦𝐴 𝑦𝑤))
1615imp 444 . . . . . 6 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ ∃𝑦𝐴 𝑦 < 𝑤) → ∃𝑦𝐴 𝑦𝑤)
174, 5, 7, 16syl21anc 1365 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦𝑤)
183, 17ralrimia 39629 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦𝑤)
19 breq2 4689 . . . . . 6 (𝑤 = 𝑥 → (𝑦𝑤𝑦𝑥))
2019rexbidv 3081 . . . . 5 (𝑤 = 𝑥 → (∃𝑦𝐴 𝑦𝑤 ↔ ∃𝑦𝐴 𝑦𝑥))
2120cbvralv 3201 . . . 4 (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
2218, 21sylib 208 . . 3 ((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
2322ex 449 . 2 (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
24 simpll 805 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) ∧ 𝑤 ∈ ℝ) → 𝐴 ⊆ ℝ*)
25 simpr 476 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
26 peano2rem 10386 . . . . . . . 8 (𝑤 ∈ ℝ → (𝑤 − 1) ∈ ℝ)
2726adantl 481 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥𝑤 ∈ ℝ) → (𝑤 − 1) ∈ ℝ)
28 simpl 472 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥𝑤 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
29 breq2 4689 . . . . . . . . 9 (𝑥 = (𝑤 − 1) → (𝑦𝑥𝑦 ≤ (𝑤 − 1)))
3029rexbidv 3081 . . . . . . . 8 (𝑥 = (𝑤 − 1) → (∃𝑦𝐴 𝑦𝑥 ↔ ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1)))
3130rspcva 3338 . . . . . . 7 (((𝑤 − 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) → ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1))
3227, 28, 31syl2anc 694 . . . . . 6 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1))
3332adantll 750 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1))
348ad4ant13 1315 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑦 ∈ ℝ*)
35 simpllr 815 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑤 ∈ ℝ)
3626rexrd 10127 . . . . . . . . . 10 (𝑤 ∈ ℝ → (𝑤 − 1) ∈ ℝ*)
3735, 36syl 17 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → (𝑤 − 1) ∈ ℝ*)
3835rexrd 10127 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑤 ∈ ℝ*)
39 simpr 476 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑦 ≤ (𝑤 − 1))
4035ltm1d 10994 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → (𝑤 − 1) < 𝑤)
4134, 37, 38, 39, 40xrlelttrd 12029 . . . . . . . 8 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑦 < 𝑤)
4241ex 449 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦 ≤ (𝑤 − 1) → 𝑦 < 𝑤))
4342reximdva 3046 . . . . . 6 ((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) → (∃𝑦𝐴 𝑦 ≤ (𝑤 − 1) → ∃𝑦𝐴 𝑦 < 𝑤))
4443imp 444 . . . . 5 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1)) → ∃𝑦𝐴 𝑦 < 𝑤)
4524, 25, 33, 44syl21anc 1365 . . . 4 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 < 𝑤)
4645ralrimiva 2995 . . 3 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤)
4746ex 449 . 2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥 → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤))
4823, 47impbid 202 1 (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942   ⊆ wss 3607   class class class wbr 4685  (class class class)co 6690  ℝcr 9973  1c1 9975  ℝ*cxr 10111   < clt 10112   ≤ cle 10113   − cmin 10304 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307 This theorem is referenced by:  infxrunb3  39964
 Copyright terms: Public domain W3C validator