MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unab Structured version   Visualization version   GIF version

Theorem unab 4042
Description: Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
unab ({𝑥𝜑} ∪ {𝑥𝜓}) = {𝑥 ∣ (𝜑𝜓)}

Proof of Theorem unab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbor 2545 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
2 df-clab 2758 . . 3 (𝑦 ∈ {𝑥 ∣ (𝜑𝜓)} ↔ [𝑦 / 𝑥](𝜑𝜓))
3 df-clab 2758 . . . 4 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
4 df-clab 2758 . . . 4 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
53, 4orbi12i 898 . . 3 ((𝑦 ∈ {𝑥𝜑} ∨ 𝑦 ∈ {𝑥𝜓}) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
61, 2, 53bitr4ri 293 . 2 ((𝑦 ∈ {𝑥𝜑} ∨ 𝑦 ∈ {𝑥𝜓}) ↔ 𝑦 ∈ {𝑥 ∣ (𝜑𝜓)})
76uneqri 3906 1 ({𝑥𝜑} ∪ {𝑥𝜓}) = {𝑥 ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wo 834   = wceq 1631  [wsb 2049  wcel 2145  {cab 2757  cun 3721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-v 3353  df-un 3728
This theorem is referenced by:  unrab  4046  rabun2  4054  dfif6  4228  unopab  4862  dmun  5469  hashf1lem2  13442  vdwlem6  15897  vtxdun  26612  diophun  37863
  Copyright terms: Public domain W3C validator