![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > un4 | Structured version Visualization version GIF version |
Description: A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.) |
Ref | Expression |
---|---|
un4 | ⊢ ((𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐷)) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | un12 3906 | . . 3 ⊢ (𝐵 ∪ (𝐶 ∪ 𝐷)) = (𝐶 ∪ (𝐵 ∪ 𝐷)) | |
2 | 1 | uneq2i 3899 | . 2 ⊢ (𝐴 ∪ (𝐵 ∪ (𝐶 ∪ 𝐷))) = (𝐴 ∪ (𝐶 ∪ (𝐵 ∪ 𝐷))) |
3 | unass 3905 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐷)) = (𝐴 ∪ (𝐵 ∪ (𝐶 ∪ 𝐷))) | |
4 | unass 3905 | . 2 ⊢ ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐷)) = (𝐴 ∪ (𝐶 ∪ (𝐵 ∪ 𝐷))) | |
5 | 2, 3, 4 | 3eqtr4i 2784 | 1 ⊢ ((𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐷)) = ((𝐴 ∪ 𝐶) ∪ (𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1624 ∪ cun 3705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-v 3334 df-un 3712 |
This theorem is referenced by: unundi 3909 unundir 3910 xpun 5325 resasplit 6227 ex-pw 27589 iunrelexp0 38488 |
Copyright terms: Public domain | W3C validator |