MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  un0mulcl Structured version   Visualization version   GIF version

Theorem un0mulcl 11365
Description: If 𝑆 is closed under multiplication, then so is 𝑆 ∪ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
un0addcl.1 (𝜑𝑆 ⊆ ℂ)
un0addcl.2 𝑇 = (𝑆 ∪ {0})
un0mulcl.3 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 · 𝑁) ∈ 𝑆)
Assertion
Ref Expression
un0mulcl ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 · 𝑁) ∈ 𝑇)

Proof of Theorem un0mulcl
StepHypRef Expression
1 un0addcl.2 . . . . 5 𝑇 = (𝑆 ∪ {0})
21eleq2i 2722 . . . 4 (𝑁𝑇𝑁 ∈ (𝑆 ∪ {0}))
3 elun 3786 . . . 4 (𝑁 ∈ (𝑆 ∪ {0}) ↔ (𝑁𝑆𝑁 ∈ {0}))
42, 3bitri 264 . . 3 (𝑁𝑇 ↔ (𝑁𝑆𝑁 ∈ {0}))
51eleq2i 2722 . . . . . 6 (𝑀𝑇𝑀 ∈ (𝑆 ∪ {0}))
6 elun 3786 . . . . . 6 (𝑀 ∈ (𝑆 ∪ {0}) ↔ (𝑀𝑆𝑀 ∈ {0}))
75, 6bitri 264 . . . . 5 (𝑀𝑇 ↔ (𝑀𝑆𝑀 ∈ {0}))
8 ssun1 3809 . . . . . . . . 9 𝑆 ⊆ (𝑆 ∪ {0})
98, 1sseqtr4i 3671 . . . . . . . 8 𝑆𝑇
10 un0mulcl.3 . . . . . . . 8 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 · 𝑁) ∈ 𝑆)
119, 10sseldi 3634 . . . . . . 7 ((𝜑 ∧ (𝑀𝑆𝑁𝑆)) → (𝑀 · 𝑁) ∈ 𝑇)
1211expr 642 . . . . . 6 ((𝜑𝑀𝑆) → (𝑁𝑆 → (𝑀 · 𝑁) ∈ 𝑇))
13 un0addcl.1 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℂ)
1413sselda 3636 . . . . . . . . . 10 ((𝜑𝑁𝑆) → 𝑁 ∈ ℂ)
1514mul02d 10272 . . . . . . . . 9 ((𝜑𝑁𝑆) → (0 · 𝑁) = 0)
16 ssun2 3810 . . . . . . . . . . 11 {0} ⊆ (𝑆 ∪ {0})
1716, 1sseqtr4i 3671 . . . . . . . . . 10 {0} ⊆ 𝑇
18 c0ex 10072 . . . . . . . . . . 11 0 ∈ V
1918snss 4348 . . . . . . . . . 10 (0 ∈ 𝑇 ↔ {0} ⊆ 𝑇)
2017, 19mpbir 221 . . . . . . . . 9 0 ∈ 𝑇
2115, 20syl6eqel 2738 . . . . . . . 8 ((𝜑𝑁𝑆) → (0 · 𝑁) ∈ 𝑇)
22 elsni 4227 . . . . . . . . . 10 (𝑀 ∈ {0} → 𝑀 = 0)
2322oveq1d 6705 . . . . . . . . 9 (𝑀 ∈ {0} → (𝑀 · 𝑁) = (0 · 𝑁))
2423eleq1d 2715 . . . . . . . 8 (𝑀 ∈ {0} → ((𝑀 · 𝑁) ∈ 𝑇 ↔ (0 · 𝑁) ∈ 𝑇))
2521, 24syl5ibrcom 237 . . . . . . 7 ((𝜑𝑁𝑆) → (𝑀 ∈ {0} → (𝑀 · 𝑁) ∈ 𝑇))
2625impancom 455 . . . . . 6 ((𝜑𝑀 ∈ {0}) → (𝑁𝑆 → (𝑀 · 𝑁) ∈ 𝑇))
2712, 26jaodan 843 . . . . 5 ((𝜑 ∧ (𝑀𝑆𝑀 ∈ {0})) → (𝑁𝑆 → (𝑀 · 𝑁) ∈ 𝑇))
287, 27sylan2b 491 . . . 4 ((𝜑𝑀𝑇) → (𝑁𝑆 → (𝑀 · 𝑁) ∈ 𝑇))
29 0cnd 10071 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℂ)
3029snssd 4372 . . . . . . . . . 10 (𝜑 → {0} ⊆ ℂ)
3113, 30unssd 3822 . . . . . . . . 9 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
321, 31syl5eqss 3682 . . . . . . . 8 (𝜑𝑇 ⊆ ℂ)
3332sselda 3636 . . . . . . 7 ((𝜑𝑀𝑇) → 𝑀 ∈ ℂ)
3433mul01d 10273 . . . . . 6 ((𝜑𝑀𝑇) → (𝑀 · 0) = 0)
3534, 20syl6eqel 2738 . . . . 5 ((𝜑𝑀𝑇) → (𝑀 · 0) ∈ 𝑇)
36 elsni 4227 . . . . . . 7 (𝑁 ∈ {0} → 𝑁 = 0)
3736oveq2d 6706 . . . . . 6 (𝑁 ∈ {0} → (𝑀 · 𝑁) = (𝑀 · 0))
3837eleq1d 2715 . . . . 5 (𝑁 ∈ {0} → ((𝑀 · 𝑁) ∈ 𝑇 ↔ (𝑀 · 0) ∈ 𝑇))
3935, 38syl5ibrcom 237 . . . 4 ((𝜑𝑀𝑇) → (𝑁 ∈ {0} → (𝑀 · 𝑁) ∈ 𝑇))
4028, 39jaod 394 . . 3 ((𝜑𝑀𝑇) → ((𝑁𝑆𝑁 ∈ {0}) → (𝑀 · 𝑁) ∈ 𝑇))
414, 40syl5bi 232 . 2 ((𝜑𝑀𝑇) → (𝑁𝑇 → (𝑀 · 𝑁) ∈ 𝑇))
4241impr 648 1 ((𝜑 ∧ (𝑀𝑇𝑁𝑇)) → (𝑀 · 𝑁) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1523  wcel 2030  cun 3605  wss 3607  {csn 4210  (class class class)co 6690  cc 9972  0cc0 9974   · cmul 9979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-ltxr 10117
This theorem is referenced by:  nn0mulcl  11367  plymullem  24017
  Copyright terms: Public domain W3C validator