MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrwwlks2on Structured version   Visualization version   GIF version

Theorem umgrwwlks2on 26923
Description: A walk of length 2 between two vertices as word in a multigraph. This theorem would also hold for pseudographs, but to prove this the cases 𝐴 = 𝐵 and/or 𝐵 = 𝐶 must be considered separately. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 12-May-2021.)
Hypotheses
Ref Expression
s3wwlks2on.v 𝑉 = (Vtx‘𝐺)
usgrwwlks2on.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgrwwlks2on ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))

Proof of Theorem umgrwwlks2on
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 umgrupgr 26043 . . . 4 (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph)
21adantr 480 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐺 ∈ UPGraph)
3 simp1 1081 . . . 4 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 𝐴𝑉)
43adantl 481 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐴𝑉)
5 simpr3 1089 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
6 s3wwlks2on.v . . . 4 𝑉 = (Vtx‘𝐺)
76s3wwlks2on 26922 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐴𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2)))
82, 4, 5, 7syl3anc 1366 . 2 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2)))
9 eqid 2651 . . . . . . . 8 (iEdg‘𝐺) = (iEdg‘𝐺)
106, 9upgr2wlk 26620 . . . . . . 7 (𝐺 ∈ UPGraph → ((𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2) ↔ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)}))))
111, 10syl 17 . . . . . 6 (𝐺 ∈ UMGraph → ((𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2) ↔ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)}))))
1211adantr 480 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2) ↔ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)}))))
13 s3fv0 13682 . . . . . . . . . . . 12 (𝐴𝑉 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
14133ad2ant1 1102 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
15 s3fv1 13683 . . . . . . . . . . . 12 (𝐵𝑉 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
16153ad2ant2 1103 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
1714, 16preq12d 4308 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑉𝐶𝑉) → {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} = {𝐴, 𝐵})
1817eqeq2d 2661 . . . . . . . . 9 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ↔ ((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵}))
19 s3fv2 13684 . . . . . . . . . . . 12 (𝐶𝑉 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
20193ad2ant3 1104 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
2116, 20preq12d 4308 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑉𝐶𝑉) → {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)} = {𝐵, 𝐶})
2221eqeq2d 2661 . . . . . . . . 9 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)} ↔ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))
2318, 22anbi12d 747 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)}) ↔ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})))
2423adantl 481 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)}) ↔ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})))
25243anbi3d 1445 . . . . . 6 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)})) ↔ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))))
26 umgruhgr 26044 . . . . . . . . . . 11 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
279uhgrfun 26006 . . . . . . . . . . 11 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
28 fdmrn 6102 . . . . . . . . . . . 12 (Fun (iEdg‘𝐺) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺))
29 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺))
30 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → 𝑓:(0..^2)⟶dom (iEdg‘𝐺))
31 c0ex 10072 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
3231prid1 4329 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ {0, 1}
33 fzo0to2pr 12593 . . . . . . . . . . . . . . . . . . . . 21 (0..^2) = {0, 1}
3432, 33eleqtrri 2729 . . . . . . . . . . . . . . . . . . . 20 0 ∈ (0..^2)
3534a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → 0 ∈ (0..^2))
3630, 35ffvelrnd 6400 . . . . . . . . . . . . . . . . . 18 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → (𝑓‘0) ∈ dom (iEdg‘𝐺))
3736adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → (𝑓‘0) ∈ dom (iEdg‘𝐺))
3829, 37ffvelrnd 6400 . . . . . . . . . . . . . . . 16 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → ((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺))
39 1ex 10073 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ V
4039prid2 4330 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ {0, 1}
4140, 33eleqtrri 2729 . . . . . . . . . . . . . . . . . . . 20 1 ∈ (0..^2)
4241a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → 1 ∈ (0..^2))
4330, 42ffvelrnd 6400 . . . . . . . . . . . . . . . . . 18 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → (𝑓‘1) ∈ dom (iEdg‘𝐺))
4443adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → (𝑓‘1) ∈ dom (iEdg‘𝐺))
4529, 44ffvelrnd 6400 . . . . . . . . . . . . . . . 16 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))
4638, 45jca 553 . . . . . . . . . . . . . . 15 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺)) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺)))
4746ex 449 . . . . . . . . . . . . . 14 (𝑓:(0..^2)⟶dom (iEdg‘𝐺) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
48473ad2ant1 1102 . . . . . . . . . . . . 13 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
4948com12 32 . . . . . . . . . . . 12 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶ran (iEdg‘𝐺) → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
5028, 49sylbi 207 . . . . . . . . . . 11 (Fun (iEdg‘𝐺) → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
5126, 27, 503syl 18 . . . . . . . . . 10 (𝐺 ∈ UMGraph → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
5251imp 444 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺)))
53 eqcom 2658 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = ((iEdg‘𝐺)‘(𝑓‘0)))
5453biimpi 206 . . . . . . . . . . . . . 14 (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} → {𝐴, 𝐵} = ((iEdg‘𝐺)‘(𝑓‘0)))
5554adantr 480 . . . . . . . . . . . . 13 ((((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}) → {𝐴, 𝐵} = ((iEdg‘𝐺)‘(𝑓‘0)))
56553ad2ant3 1104 . . . . . . . . . . . 12 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → {𝐴, 𝐵} = ((iEdg‘𝐺)‘(𝑓‘0)))
5756adantl 481 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → {𝐴, 𝐵} = ((iEdg‘𝐺)‘(𝑓‘0)))
58 usgrwwlks2on.e . . . . . . . . . . . . 13 𝐸 = (Edg‘𝐺)
59 edgval 25986 . . . . . . . . . . . . 13 (Edg‘𝐺) = ran (iEdg‘𝐺)
6058, 59eqtri 2673 . . . . . . . . . . . 12 𝐸 = ran (iEdg‘𝐺)
6160a1i 11 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → 𝐸 = ran (iEdg‘𝐺))
6257, 61eleq12d 2724 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → ({𝐴, 𝐵} ∈ 𝐸 ↔ ((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺)))
63 eqcom 2658 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶} ↔ {𝐵, 𝐶} = ((iEdg‘𝐺)‘(𝑓‘1)))
6463biimpi 206 . . . . . . . . . . . . . 14 (((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶} → {𝐵, 𝐶} = ((iEdg‘𝐺)‘(𝑓‘1)))
6564adantl 481 . . . . . . . . . . . . 13 ((((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}) → {𝐵, 𝐶} = ((iEdg‘𝐺)‘(𝑓‘1)))
66653ad2ant3 1104 . . . . . . . . . . . 12 ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → {𝐵, 𝐶} = ((iEdg‘𝐺)‘(𝑓‘1)))
6766adantl 481 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → {𝐵, 𝐶} = ((iEdg‘𝐺)‘(𝑓‘1)))
6867, 61eleq12d 2724 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → ({𝐵, 𝐶} ∈ 𝐸 ↔ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺)))
6962, 68anbi12d 747 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (((iEdg‘𝐺)‘(𝑓‘0)) ∈ ran (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(𝑓‘1)) ∈ ran (iEdg‘𝐺))))
7052, 69mpbird 247 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ (𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶}))) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
7170ex 449 . . . . . . 7 (𝐺 ∈ UMGraph → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
7271adantr 480 . . . . . 6 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {𝐵, 𝐶})) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
7325, 72sylbid 230 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓:(0..^2)⟶dom (iEdg‘𝐺) ∧ ⟨“𝐴𝐵𝐶”⟩:(0...2)⟶𝑉 ∧ (((iEdg‘𝐺)‘(𝑓‘0)) = {(⟨“𝐴𝐵𝐶”⟩‘0), (⟨“𝐴𝐵𝐶”⟩‘1)} ∧ ((iEdg‘𝐺)‘(𝑓‘1)) = {(⟨“𝐴𝐵𝐶”⟩‘1), (⟨“𝐴𝐵𝐶”⟩‘2)})) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
7412, 73sylbid 230 . . . 4 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
7574exlimdv 1901 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
7658umgr2wlk 26914 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))))
77 wlklenvp1 26570 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walks‘𝐺)𝑝 → (#‘𝑝) = ((#‘𝑓) + 1))
78 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . 22 ((#‘𝑓) = 2 → ((#‘𝑓) + 1) = (2 + 1))
79 2p1e3 11189 . . . . . . . . . . . . . . . . . . . . . 22 (2 + 1) = 3
8078, 79syl6eq 2701 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝑓) = 2 → ((#‘𝑓) + 1) = 3)
8180adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((#‘𝑓) + 1) = 3)
8277, 81sylan9eq 2705 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walks‘𝐺)𝑝 ∧ ((#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (#‘𝑝) = 3)
83 eqcom 2658 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 = (𝑝‘0) ↔ (𝑝‘0) = 𝐴)
84 eqcom 2658 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 = (𝑝‘1) ↔ (𝑝‘1) = 𝐵)
85 eqcom 2658 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐶 = (𝑝‘2) ↔ (𝑝‘2) = 𝐶)
8683, 84, 853anbi123i 1270 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) ↔ ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))
8786biimpi 206 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))
8887adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))
8988adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walks‘𝐺)𝑝 ∧ ((#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))
9082, 89jca 553 . . . . . . . . . . . . . . . . . 18 ((𝑓(Walks‘𝐺)𝑝 ∧ ((#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → ((#‘𝑝) = 3 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶)))
916wlkpwrd 26569 . . . . . . . . . . . . . . . . . . . . 21 (𝑓(Walks‘𝐺)𝑝𝑝 ∈ Word 𝑉)
9280eqeq2d 2661 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝑓) = 2 → ((#‘𝑝) = ((#‘𝑓) + 1) ↔ (#‘𝑝) = 3))
9392adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ Word 𝑉 ∧ (#‘𝑓) = 2) → ((#‘𝑝) = ((#‘𝑓) + 1) ↔ (#‘𝑝) = 3))
94 simp1 1081 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 3 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → 𝑝 ∈ Word 𝑉)
95 oveq2 6698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((#‘𝑝) = 3 → (0..^(#‘𝑝)) = (0..^3))
96 fzo0to3tp 12594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0..^3) = {0, 1, 2}
9795, 96syl6eq 2701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((#‘𝑝) = 3 → (0..^(#‘𝑝)) = {0, 1, 2})
9831tpid1 4335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 0 ∈ {0, 1, 2}
99 eleq2 2719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((0..^(#‘𝑝)) = {0, 1, 2} → (0 ∈ (0..^(#‘𝑝)) ↔ 0 ∈ {0, 1, 2}))
10098, 99mpbiri 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0..^(#‘𝑝)) = {0, 1, 2} → 0 ∈ (0..^(#‘𝑝)))
101 wrdsymbcl 13350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑝 ∈ Word 𝑉 ∧ 0 ∈ (0..^(#‘𝑝))) → (𝑝‘0) ∈ 𝑉)
102100, 101sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑝 ∈ Word 𝑉 ∧ (0..^(#‘𝑝)) = {0, 1, 2}) → (𝑝‘0) ∈ 𝑉)
10339tpid2 4336 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1 ∈ {0, 1, 2}
104 eleq2 2719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((0..^(#‘𝑝)) = {0, 1, 2} → (1 ∈ (0..^(#‘𝑝)) ↔ 1 ∈ {0, 1, 2}))
105103, 104mpbiri 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0..^(#‘𝑝)) = {0, 1, 2} → 1 ∈ (0..^(#‘𝑝)))
106 wrdsymbcl 13350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑝 ∈ Word 𝑉 ∧ 1 ∈ (0..^(#‘𝑝))) → (𝑝‘1) ∈ 𝑉)
107105, 106sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑝 ∈ Word 𝑉 ∧ (0..^(#‘𝑝)) = {0, 1, 2}) → (𝑝‘1) ∈ 𝑉)
108 2ex 11130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 ∈ V
109108tpid3 4338 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2 ∈ {0, 1, 2}
110 eleq2 2719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((0..^(#‘𝑝)) = {0, 1, 2} → (2 ∈ (0..^(#‘𝑝)) ↔ 2 ∈ {0, 1, 2}))
111109, 110mpbiri 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0..^(#‘𝑝)) = {0, 1, 2} → 2 ∈ (0..^(#‘𝑝)))
112 wrdsymbcl 13350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑝 ∈ Word 𝑉 ∧ 2 ∈ (0..^(#‘𝑝))) → (𝑝‘2) ∈ 𝑉)
113111, 112sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑝 ∈ Word 𝑉 ∧ (0..^(#‘𝑝)) = {0, 1, 2}) → (𝑝‘2) ∈ 𝑉)
114102, 107, 1133jca 1261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑝 ∈ Word 𝑉 ∧ (0..^(#‘𝑝)) = {0, 1, 2}) → ((𝑝‘0) ∈ 𝑉 ∧ (𝑝‘1) ∈ 𝑉 ∧ (𝑝‘2) ∈ 𝑉))
11597, 114sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 3) → ((𝑝‘0) ∈ 𝑉 ∧ (𝑝‘1) ∈ 𝑉 ∧ (𝑝‘2) ∈ 𝑉))
1161153adant3 1101 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 3 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((𝑝‘0) ∈ 𝑉 ∧ (𝑝‘1) ∈ 𝑉 ∧ (𝑝‘2) ∈ 𝑉))
117 eleq1 2718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐴 = (𝑝‘0) → (𝐴𝑉 ↔ (𝑝‘0) ∈ 𝑉))
1181173ad2ant1 1102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝐴𝑉 ↔ (𝑝‘0) ∈ 𝑉))
119 eleq1 2718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐵 = (𝑝‘1) → (𝐵𝑉 ↔ (𝑝‘1) ∈ 𝑉))
1201193ad2ant2 1103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝐵𝑉 ↔ (𝑝‘1) ∈ 𝑉))
121 eleq1 2718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐶 = (𝑝‘2) → (𝐶𝑉 ↔ (𝑝‘2) ∈ 𝑉))
1221213ad2ant3 1104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝐶𝑉 ↔ (𝑝‘2) ∈ 𝑉))
123118, 120, 1223anbi123d 1439 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → ((𝐴𝑉𝐵𝑉𝐶𝑉) ↔ ((𝑝‘0) ∈ 𝑉 ∧ (𝑝‘1) ∈ 𝑉 ∧ (𝑝‘2) ∈ 𝑉)))
1241233ad2ant3 1104 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 3 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ((𝐴𝑉𝐵𝑉𝐶𝑉) ↔ ((𝑝‘0) ∈ 𝑉 ∧ (𝑝‘1) ∈ 𝑉 ∧ (𝑝‘2) ∈ 𝑉)))
125116, 124mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 3 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝐴𝑉𝐵𝑉𝐶𝑉))
12694, 125jca 553 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = 3 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))
1271263exp 1283 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 ∈ Word 𝑉 → ((#‘𝑝) = 3 → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))))
128127adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑝 ∈ Word 𝑉 ∧ (#‘𝑓) = 2) → ((#‘𝑝) = 3 → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))))
12993, 128sylbid 230 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ Word 𝑉 ∧ (#‘𝑓) = 2) → ((#‘𝑝) = ((#‘𝑓) + 1) → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))))
130129impancom 455 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = ((#‘𝑓) + 1)) → ((#‘𝑓) = 2 → ((𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))))
131130impd 446 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ Word 𝑉 ∧ (#‘𝑝) = ((#‘𝑓) + 1)) → (((#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉))))
13291, 77, 131syl2anc 694 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walks‘𝐺)𝑝 → (((#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉))))
133132imp 444 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walks‘𝐺)𝑝 ∧ ((#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)))
134 eqwrds3 13750 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑝 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((#‘𝑝) = 3 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))))
135133, 134syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑓(Walks‘𝐺)𝑝 ∧ ((#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑝 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((#‘𝑝) = 3 ∧ ((𝑝‘0) = 𝐴 ∧ (𝑝‘1) = 𝐵 ∧ (𝑝‘2) = 𝐶))))
13690, 135mpbird 247 . . . . . . . . . . . . . . . . 17 ((𝑓(Walks‘𝐺)𝑝 ∧ ((#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → 𝑝 = ⟨“𝐴𝐵𝐶”⟩)
137136breq2d 4697 . . . . . . . . . . . . . . . 16 ((𝑓(Walks‘𝐺)𝑝 ∧ ((#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑓(Walks‘𝐺)𝑝𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩))
138137biimpd 219 . . . . . . . . . . . . . . 15 ((𝑓(Walks‘𝐺)𝑝 ∧ ((#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑓(Walks‘𝐺)𝑝𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩))
139138ex 449 . . . . . . . . . . . . . 14 (𝑓(Walks‘𝐺)𝑝 → (((#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑓(Walks‘𝐺)𝑝𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩)))
140139pm2.43a 54 . . . . . . . . . . . . 13 (𝑓(Walks‘𝐺)𝑝 → (((#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → 𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩))
1411403impib 1281 . . . . . . . . . . . 12 ((𝑓(Walks‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → 𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩)
142141adantl 481 . . . . . . . . . . 11 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝑓(Walks‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → 𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩)
143 simpr2 1088 . . . . . . . . . . 11 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝑓(Walks‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (#‘𝑓) = 2)
144142, 143jca 553 . . . . . . . . . 10 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝑓(Walks‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2)))) → (𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2))
145144ex 449 . . . . . . . . 9 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝑓(Walks‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2)))
146145exlimdv 1901 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (∃𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → (𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2)))
147146eximdv 1886 . . . . . . 7 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (#‘𝑓) = 2 ∧ (𝐴 = (𝑝‘0) ∧ 𝐵 = (𝑝‘1) ∧ 𝐶 = (𝑝‘2))) → ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2)))
14876, 147syl5com 31 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2)))
1491483expib 1287 . . . . 5 (𝐺 ∈ UMGraph → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴𝑉𝐵𝑉𝐶𝑉) → ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2))))
150149com23 86 . . . 4 (𝐺 ∈ UMGraph → ((𝐴𝑉𝐵𝑉𝐶𝑉) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2))))
151150imp 444 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2)))
15275, 151impbid 202 . 2 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (∃𝑓(𝑓(Walks‘𝐺)⟨“𝐴𝐵𝐶”⟩ ∧ (#‘𝑓) = 2) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
1538, 152bitrd 268 1 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  {cpr 4212  {ctp 4214   class class class wbr 4685  dom cdm 5143  ran crn 5144  Fun wfun 5920  wf 5922  cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975   + caddc 9977  2c2 11108  3c3 11109  ...cfz 12364  ..^cfzo 12504  #chash 13157  Word cword 13323  ⟨“cs3 13633  Vtxcvtx 25919  iEdgciedg 25920  Edgcedg 25984  UHGraphcuhgr 25996  UPGraphcupgr 26020  UMGraphcumgr 26021  Walkscwlks 26548   WWalksNOn cwwlksnon 26775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-ac2 9323  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-ac 8977  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-s3 13640  df-edg 25985  df-uhgr 25998  df-upgr 26022  df-umgr 26023  df-wlks 26551  df-wwlks 26778  df-wwlksn 26779  df-wwlksnon 26780
This theorem is referenced by:  wwlks2onsym  26924  usgr2wspthons3  26931  frgr2wwlkeu  27307
  Copyright terms: Public domain W3C validator