![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgrunop | Structured version Visualization version GIF version |
Description: The union of two multigraphs (with the same vertex set): If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are multigraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a multigraph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
umgrun.g | ⊢ (𝜑 → 𝐺 ∈ UMGraph) |
umgrun.h | ⊢ (𝜑 → 𝐻 ∈ UMGraph) |
umgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
umgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
umgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
umgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
umgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
Ref | Expression |
---|---|
umgrunop | ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UMGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgrun.g | . 2 ⊢ (𝜑 → 𝐺 ∈ UMGraph) | |
2 | umgrun.h | . 2 ⊢ (𝜑 → 𝐻 ∈ UMGraph) | |
3 | umgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
4 | umgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
5 | umgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | umgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
7 | umgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
8 | opex 4962 | . . 3 ⊢ 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V | |
9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V) |
10 | fvex 6239 | . . . . 5 ⊢ (Vtx‘𝐺) ∈ V | |
11 | 5, 10 | eqeltri 2726 | . . . 4 ⊢ 𝑉 ∈ V |
12 | fvex 6239 | . . . . . 6 ⊢ (iEdg‘𝐺) ∈ V | |
13 | 3, 12 | eqeltri 2726 | . . . . 5 ⊢ 𝐸 ∈ V |
14 | fvex 6239 | . . . . . 6 ⊢ (iEdg‘𝐻) ∈ V | |
15 | 4, 14 | eqeltri 2726 | . . . . 5 ⊢ 𝐹 ∈ V |
16 | 13, 15 | unex 6998 | . . . 4 ⊢ (𝐸 ∪ 𝐹) ∈ V |
17 | 11, 16 | pm3.2i 470 | . . 3 ⊢ (𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) |
18 | opvtxfv 25929 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) | |
19 | 17, 18 | mp1i 13 | . 2 ⊢ (𝜑 → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) |
20 | opiedgfv 25932 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) | |
21 | 17, 20 | mp1i 13 | . 2 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) |
22 | 1, 2, 3, 4, 5, 6, 7, 9, 19, 21 | umgrun 26060 | 1 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UMGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∪ cun 3605 ∩ cin 3606 ∅c0 3948 〈cop 4216 dom cdm 5143 ‘cfv 5926 Vtxcvtx 25919 iEdgciedg 25920 UMGraphcumgr 26021 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-hash 13158 df-vtx 25921 df-iedg 25922 df-umgr 26023 |
This theorem is referenced by: usgrunop 26128 |
Copyright terms: Public domain | W3C validator |