MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrun Structured version   Visualization version   GIF version

Theorem umgrun 26235
Description: The union 𝑈 of two multigraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a multigraph with the vertex 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 25-Nov-2020.)
Hypotheses
Ref Expression
umgrun.g (𝜑𝐺 ∈ UMGraph)
umgrun.h (𝜑𝐻 ∈ UMGraph)
umgrun.e 𝐸 = (iEdg‘𝐺)
umgrun.f 𝐹 = (iEdg‘𝐻)
umgrun.vg 𝑉 = (Vtx‘𝐺)
umgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
umgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
umgrun.u (𝜑𝑈𝑊)
umgrun.v (𝜑 → (Vtx‘𝑈) = 𝑉)
umgrun.un (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
Assertion
Ref Expression
umgrun (𝜑𝑈 ∈ UMGraph)

Proof of Theorem umgrun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 umgrun.g . . . . 5 (𝜑𝐺 ∈ UMGraph)
2 umgrun.vg . . . . . 6 𝑉 = (Vtx‘𝐺)
3 umgrun.e . . . . . 6 𝐸 = (iEdg‘𝐺)
42, 3umgrf 26213 . . . . 5 (𝐺 ∈ UMGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
51, 4syl 17 . . . 4 (𝜑𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
6 umgrun.h . . . . . 6 (𝜑𝐻 ∈ UMGraph)
7 eqid 2760 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘𝐻)
8 umgrun.f . . . . . . 7 𝐹 = (iEdg‘𝐻)
97, 8umgrf 26213 . . . . . 6 (𝐻 ∈ UMGraph → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})
106, 9syl 17 . . . . 5 (𝜑𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})
11 umgrun.vh . . . . . . . . 9 (𝜑 → (Vtx‘𝐻) = 𝑉)
1211eqcomd 2766 . . . . . . . 8 (𝜑𝑉 = (Vtx‘𝐻))
1312pweqd 4307 . . . . . . 7 (𝜑 → 𝒫 𝑉 = 𝒫 (Vtx‘𝐻))
1413rabeqdv 3334 . . . . . 6 (𝜑 → {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2})
1514feq3d 6193 . . . . 5 (𝜑 → (𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (♯‘𝑥) = 2}))
1610, 15mpbird 247 . . . 4 (𝜑𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
17 umgrun.i . . . 4 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
185, 16, 17fun2d 6229 . . 3 (𝜑 → (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
19 umgrun.un . . . 4 (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
2019dmeqd 5481 . . . . 5 (𝜑 → dom (iEdg‘𝑈) = dom (𝐸𝐹))
21 dmun 5486 . . . . 5 dom (𝐸𝐹) = (dom 𝐸 ∪ dom 𝐹)
2220, 21syl6eq 2810 . . . 4 (𝜑 → dom (iEdg‘𝑈) = (dom 𝐸 ∪ dom 𝐹))
23 umgrun.v . . . . . 6 (𝜑 → (Vtx‘𝑈) = 𝑉)
2423pweqd 4307 . . . . 5 (𝜑 → 𝒫 (Vtx‘𝑈) = 𝒫 𝑉)
2524rabeqdv 3334 . . . 4 (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
2619, 22, 25feq123d 6195 . . 3 (𝜑 → ((iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2} ↔ (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
2718, 26mpbird 247 . 2 (𝜑 → (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2})
28 umgrun.u . . 3 (𝜑𝑈𝑊)
29 eqid 2760 . . . 4 (Vtx‘𝑈) = (Vtx‘𝑈)
30 eqid 2760 . . . 4 (iEdg‘𝑈) = (iEdg‘𝑈)
3129, 30isumgrs 26211 . . 3 (𝑈𝑊 → (𝑈 ∈ UMGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2}))
3228, 31syl 17 . 2 (𝜑 → (𝑈 ∈ UMGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (♯‘𝑥) = 2}))
3327, 32mpbird 247 1 (𝜑𝑈 ∈ UMGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632  wcel 2139  {crab 3054  cun 3713  cin 3714  c0 4058  𝒫 cpw 4302  dom cdm 5266  wf 6045  cfv 6049  2c2 11282  chash 13331  Vtxcvtx 26094  iEdgciedg 26095  UMGraphcumgr 26196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-hash 13332  df-umgr 26198
This theorem is referenced by:  umgrunop  26236  usgrun  26302
  Copyright terms: Public domain W3C validator