Step | Hyp | Ref
| Expression |
1 | | df-ima 5279 |
. 2
⊢ (𝐸 “ 𝐹) = ran (𝐸 ↾ 𝐹) |
2 | | fveq2 6353 |
. . . . . . 7
⊢ (𝑖 = 𝑗 → (𝐸‘𝑖) = (𝐸‘𝑗)) |
3 | | neleq2 3041 |
. . . . . . 7
⊢ ((𝐸‘𝑖) = (𝐸‘𝑗) → (𝑁 ∉ (𝐸‘𝑖) ↔ 𝑁 ∉ (𝐸‘𝑗))) |
4 | 2, 3 | syl 17 |
. . . . . 6
⊢ (𝑖 = 𝑗 → (𝑁 ∉ (𝐸‘𝑖) ↔ 𝑁 ∉ (𝐸‘𝑗))) |
5 | | upgrres.f |
. . . . . 6
⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
6 | 4, 5 | elrab2 3507 |
. . . . 5
⊢ (𝑗 ∈ 𝐹 ↔ (𝑗 ∈ dom 𝐸 ∧ 𝑁 ∉ (𝐸‘𝑗))) |
7 | | upgrres.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
8 | | upgrres.e |
. . . . . . . 8
⊢ 𝐸 = (iEdg‘𝐺) |
9 | 7, 8 | umgrf 26213 |
. . . . . . 7
⊢ (𝐺 ∈ UMGraph → 𝐸:dom 𝐸⟶{𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}) |
10 | | ffvelrn 6521 |
. . . . . . . . . 10
⊢ ((𝐸:dom 𝐸⟶{𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} ∧ 𝑗 ∈ dom 𝐸) → (𝐸‘𝑗) ∈ {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}) |
11 | | fveq2 6353 |
. . . . . . . . . . . . 13
⊢ (𝑝 = (𝐸‘𝑗) → (♯‘𝑝) = (♯‘(𝐸‘𝑗))) |
12 | 11 | eqeq1d 2762 |
. . . . . . . . . . . 12
⊢ (𝑝 = (𝐸‘𝑗) → ((♯‘𝑝) = 2 ↔ (♯‘(𝐸‘𝑗)) = 2)) |
13 | 12 | elrab 3504 |
. . . . . . . . . . 11
⊢ ((𝐸‘𝑗) ∈ {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} ↔ ((𝐸‘𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸‘𝑗)) = 2)) |
14 | | simpll 807 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐸‘𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸‘𝑗)) = 2) ∧ 𝑁 ∉ (𝐸‘𝑗)) → (𝐸‘𝑗) ∈ 𝒫 𝑉) |
15 | | elpwi 4312 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐸‘𝑗) ∈ 𝒫 𝑉 → (𝐸‘𝑗) ⊆ 𝑉) |
16 | 15 | adantr 472 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐸‘𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸‘𝑗)) = 2) → (𝐸‘𝑗) ⊆ 𝑉) |
17 | 16 | adantr 472 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐸‘𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸‘𝑗)) = 2) ∧ 𝑁 ∉ (𝐸‘𝑗)) → (𝐸‘𝑗) ⊆ 𝑉) |
18 | | simpr 479 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐸‘𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸‘𝑗)) = 2) ∧ 𝑁 ∉ (𝐸‘𝑗)) → 𝑁 ∉ (𝐸‘𝑗)) |
19 | | elpwdifsn 4465 |
. . . . . . . . . . . . . . 15
⊢ (((𝐸‘𝑗) ∈ 𝒫 𝑉 ∧ (𝐸‘𝑗) ⊆ 𝑉 ∧ 𝑁 ∉ (𝐸‘𝑗)) → (𝐸‘𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})) |
20 | 14, 17, 18, 19 | syl3anc 1477 |
. . . . . . . . . . . . . 14
⊢ ((((𝐸‘𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸‘𝑗)) = 2) ∧ 𝑁 ∉ (𝐸‘𝑗)) → (𝐸‘𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})) |
21 | | simpr 479 |
. . . . . . . . . . . . . . 15
⊢ (((𝐸‘𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸‘𝑗)) = 2) → (♯‘(𝐸‘𝑗)) = 2) |
22 | 21 | adantr 472 |
. . . . . . . . . . . . . 14
⊢ ((((𝐸‘𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸‘𝑗)) = 2) ∧ 𝑁 ∉ (𝐸‘𝑗)) → (♯‘(𝐸‘𝑗)) = 2) |
23 | 12, 20, 22 | elrabd 3506 |
. . . . . . . . . . . . 13
⊢ ((((𝐸‘𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸‘𝑗)) = 2) ∧ 𝑁 ∉ (𝐸‘𝑗)) → (𝐸‘𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
24 | 23 | ex 449 |
. . . . . . . . . . . 12
⊢ (((𝐸‘𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸‘𝑗)) = 2) → (𝑁 ∉ (𝐸‘𝑗) → (𝐸‘𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
25 | 24 | a1d 25 |
. . . . . . . . . . 11
⊢ (((𝐸‘𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸‘𝑗)) = 2) → (𝑁 ∈ 𝑉 → (𝑁 ∉ (𝐸‘𝑗) → (𝐸‘𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))) |
26 | 13, 25 | sylbi 207 |
. . . . . . . . . 10
⊢ ((𝐸‘𝑗) ∈ {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} → (𝑁 ∈ 𝑉 → (𝑁 ∉ (𝐸‘𝑗) → (𝐸‘𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))) |
27 | 10, 26 | syl 17 |
. . . . . . . . 9
⊢ ((𝐸:dom 𝐸⟶{𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} ∧ 𝑗 ∈ dom 𝐸) → (𝑁 ∈ 𝑉 → (𝑁 ∉ (𝐸‘𝑗) → (𝐸‘𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))) |
28 | 27 | ex 449 |
. . . . . . . 8
⊢ (𝐸:dom 𝐸⟶{𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} → (𝑗 ∈ dom 𝐸 → (𝑁 ∈ 𝑉 → (𝑁 ∉ (𝐸‘𝑗) → (𝐸‘𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})))) |
29 | 28 | com23 86 |
. . . . . . 7
⊢ (𝐸:dom 𝐸⟶{𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} → (𝑁 ∈ 𝑉 → (𝑗 ∈ dom 𝐸 → (𝑁 ∉ (𝐸‘𝑗) → (𝐸‘𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})))) |
30 | 9, 29 | syl 17 |
. . . . . 6
⊢ (𝐺 ∈ UMGraph → (𝑁 ∈ 𝑉 → (𝑗 ∈ dom 𝐸 → (𝑁 ∉ (𝐸‘𝑗) → (𝐸‘𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})))) |
31 | 30 | imp4b 614 |
. . . . 5
⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ((𝑗 ∈ dom 𝐸 ∧ 𝑁 ∉ (𝐸‘𝑗)) → (𝐸‘𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
32 | 6, 31 | syl5bi 232 |
. . . 4
⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝑗 ∈ 𝐹 → (𝐸‘𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
33 | 32 | ralrimiv 3103 |
. . 3
⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ∀𝑗 ∈ 𝐹 (𝐸‘𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
34 | | umgruhgr 26219 |
. . . . . 6
⊢ (𝐺 ∈ UMGraph → 𝐺 ∈
UHGraph) |
35 | 8 | uhgrfun 26181 |
. . . . . 6
⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
36 | 34, 35 | syl 17 |
. . . . 5
⊢ (𝐺 ∈ UMGraph → Fun 𝐸) |
37 | 36 | adantr 472 |
. . . 4
⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → Fun 𝐸) |
38 | | ssrab2 3828 |
. . . . 5
⊢ {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} ⊆ dom 𝐸 |
39 | 5, 38 | eqsstri 3776 |
. . . 4
⊢ 𝐹 ⊆ dom 𝐸 |
40 | | funimass4 6410 |
. . . 4
⊢ ((Fun
𝐸 ∧ 𝐹 ⊆ dom 𝐸) → ((𝐸 “ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2} ↔ ∀𝑗 ∈ 𝐹 (𝐸‘𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
41 | 37, 39, 40 | sylancl 697 |
. . 3
⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ((𝐸 “ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2} ↔ ∀𝑗 ∈ 𝐹 (𝐸‘𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
42 | 33, 41 | mpbird 247 |
. 2
⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 “ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
43 | 1, 42 | syl5eqssr 3791 |
1
⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |