MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrislfupgrlem Structured version   Visualization version   GIF version

Theorem umgrislfupgrlem 26187
Description: Lemma for umgrislfupgr 26188 and usgrislfuspgr 26249. (Contributed by AV, 27-Jan-2021.)
Assertion
Ref Expression
umgrislfupgrlem ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}

Proof of Theorem umgrislfupgrlem
StepHypRef Expression
1 2pos 11275 . . . 4 0 < 2
2 simprl 811 . . . . . . . . 9 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ∈ 𝒫 𝑉)
3 fveq2 6340 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
4 hash0 13321 . . . . . . . . . . . . . . . 16 (♯‘∅) = 0
53, 4syl6eq 2798 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (♯‘𝑥) = 0)
65breq2d 4804 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (2 ≤ (♯‘𝑥) ↔ 2 ≤ 0))
7 2re 11253 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
8 0re 10203 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
97, 8lenlti 10320 . . . . . . . . . . . . . . 15 (2 ≤ 0 ↔ ¬ 0 < 2)
10 pm2.21 120 . . . . . . . . . . . . . . 15 (¬ 0 < 2 → (0 < 2 → 𝑥 ≠ ∅))
119, 10sylbi 207 . . . . . . . . . . . . . 14 (2 ≤ 0 → (0 < 2 → 𝑥 ≠ ∅))
126, 11syl6bi 243 . . . . . . . . . . . . 13 (𝑥 = ∅ → (2 ≤ (♯‘𝑥) → (0 < 2 → 𝑥 ≠ ∅)))
1312adantld 484 . . . . . . . . . . . 12 (𝑥 = ∅ → ((𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)) → (0 < 2 → 𝑥 ≠ ∅)))
1413com23 86 . . . . . . . . . . 11 (𝑥 = ∅ → (0 < 2 → ((𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)) → 𝑥 ≠ ∅)))
1514impd 446 . . . . . . . . . 10 (𝑥 = ∅ → ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ≠ ∅))
16 ax-1 6 . . . . . . . . . 10 (𝑥 ≠ ∅ → ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ≠ ∅))
1715, 16pm2.61ine 3003 . . . . . . . . 9 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ≠ ∅)
18 eldifsn 4450 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝑉𝑥 ≠ ∅))
192, 17, 18sylanbrc 701 . . . . . . . 8 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 𝑥 ∈ (𝒫 𝑉 ∖ {∅}))
20 simprr 813 . . . . . . . 8 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → 2 ≤ (♯‘𝑥))
2119, 20jca 555 . . . . . . 7 ((0 < 2 ∧ (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥))) → (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∧ 2 ≤ (♯‘𝑥)))
2221ex 449 . . . . . 6 (0 < 2 → ((𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)) → (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∧ 2 ≤ (♯‘𝑥))))
23 eldifi 3863 . . . . . . 7 (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) → 𝑥 ∈ 𝒫 𝑉)
2423anim1i 593 . . . . . 6 ((𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∧ 2 ≤ (♯‘𝑥)) → (𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)))
2522, 24impbid1 215 . . . . 5 (0 < 2 → ((𝑥 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝑥)) ↔ (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∧ 2 ≤ (♯‘𝑥))))
2625rabbidva2 3314 . . . 4 (0 < 2 → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ 2 ≤ (♯‘𝑥)})
271, 26ax-mp 5 . . 3 {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ 2 ≤ (♯‘𝑥)}
2827ineq2i 3942 . 2 ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ 2 ≤ (♯‘𝑥)})
29 inrab 4030 . 2 ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥))}
30 vex 3331 . . . . . . 7 𝑥 ∈ V
31 hashxnn0 13292 . . . . . . 7 (𝑥 ∈ V → (♯‘𝑥) ∈ ℕ0*)
3230, 31ax-mp 5 . . . . . 6 (♯‘𝑥) ∈ ℕ0*
33 xnn0xr 11531 . . . . . 6 ((♯‘𝑥) ∈ ℕ0* → (♯‘𝑥) ∈ ℝ*)
3432, 33ax-mp 5 . . . . 5 (♯‘𝑥) ∈ ℝ*
357rexri 10260 . . . . 5 2 ∈ ℝ*
36 xrletri3 12149 . . . . 5 (((♯‘𝑥) ∈ ℝ* ∧ 2 ∈ ℝ*) → ((♯‘𝑥) = 2 ↔ ((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥))))
3734, 35, 36mp2an 710 . . . 4 ((♯‘𝑥) = 2 ↔ ((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥)))
3837bicomi 214 . . 3 (((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥)) ↔ (♯‘𝑥) = 2)
3938rabbii 3313 . 2 {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ((♯‘𝑥) ≤ 2 ∧ 2 ≤ (♯‘𝑥))} = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}
4028, 29, 393eqtri 2774 1 ({𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∩ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) = {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) = 2}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1620  wcel 2127  wne 2920  {crab 3042  Vcvv 3328  cdif 3700  cin 3702  c0 4046  𝒫 cpw 4290  {csn 4309   class class class wbr 4792  cfv 6037  0cc0 10099  *cxr 10236   < clt 10237  cle 10238  2c2 11233  0*cxnn0 11526  chash 13282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8926  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-2 11242  df-n0 11456  df-xnn0 11527  df-z 11541  df-uz 11851  df-fz 12491  df-hash 13283
This theorem is referenced by:  umgrislfupgr  26188  usgrislfuspgr  26249
  Copyright terms: Public domain W3C validator