![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgredgnlp | Structured version Visualization version GIF version |
Description: An edge of a multigraph is not a loop. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 8-Jun-2021.) |
Ref | Expression |
---|---|
umgredgnlp.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
umgredgnlp | ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → ¬ ∃𝑣 𝐶 = {𝑣}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3307 | . . . . . 6 ⊢ 𝑣 ∈ V | |
2 | hashsng 13272 | . . . . . 6 ⊢ (𝑣 ∈ V → (♯‘{𝑣}) = 1) | |
3 | 1ne2 11353 | . . . . . . . 8 ⊢ 1 ≠ 2 | |
4 | 3 | neii 2898 | . . . . . . 7 ⊢ ¬ 1 = 2 |
5 | eqeq1 2728 | . . . . . . 7 ⊢ ((♯‘{𝑣}) = 1 → ((♯‘{𝑣}) = 2 ↔ 1 = 2)) | |
6 | 4, 5 | mtbiri 316 | . . . . . 6 ⊢ ((♯‘{𝑣}) = 1 → ¬ (♯‘{𝑣}) = 2) |
7 | 1, 2, 6 | mp2b 10 | . . . . 5 ⊢ ¬ (♯‘{𝑣}) = 2 |
8 | fveq2 6304 | . . . . . 6 ⊢ (𝐶 = {𝑣} → (♯‘𝐶) = (♯‘{𝑣})) | |
9 | 8 | eqeq1d 2726 | . . . . 5 ⊢ (𝐶 = {𝑣} → ((♯‘𝐶) = 2 ↔ (♯‘{𝑣}) = 2)) |
10 | 7, 9 | mtbiri 316 | . . . 4 ⊢ (𝐶 = {𝑣} → ¬ (♯‘𝐶) = 2) |
11 | 10 | intnand 1000 | . . 3 ⊢ (𝐶 = {𝑣} → ¬ (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2)) |
12 | umgredgnlp.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
13 | 12 | eleq2i 2795 | . . . 4 ⊢ (𝐶 ∈ 𝐸 ↔ 𝐶 ∈ (Edg‘𝐺)) |
14 | edgumgr 26150 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ (Edg‘𝐺)) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2)) | |
15 | 13, 14 | sylan2b 493 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2)) |
16 | 11, 15 | nsyl3 133 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → ¬ 𝐶 = {𝑣}) |
17 | 16 | nexdv 1977 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → ¬ ∃𝑣 𝐶 = {𝑣}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1596 ∃wex 1817 ∈ wcel 2103 Vcvv 3304 𝒫 cpw 4266 {csn 4285 ‘cfv 6001 1c1 10050 2c2 11183 ♯chash 13232 Vtxcvtx 25994 Edgcedg 26059 UMGraphcumgr 26096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-card 8878 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-nn 11134 df-2 11192 df-n0 11406 df-z 11491 df-uz 11801 df-fz 12441 df-hash 13233 df-edg 26060 df-umgr 26098 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |