Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgredg Structured version   Visualization version   GIF version

Theorem umgredg 26078
 Description: For each edge in a multigraph, there are two distinct vertices which are connected by this edge. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 25-Nov-2020.)
Hypotheses
Ref Expression
upgredg.v 𝑉 = (Vtx‘𝐺)
upgredg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgredg ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝐶 = {𝑎, 𝑏}))
Distinct variable groups:   𝐶,𝑎,𝑏   𝐺,𝑎,𝑏   𝑉,𝑎,𝑏
Allowed substitution hints:   𝐸(𝑎,𝑏)

Proof of Theorem umgredg
StepHypRef Expression
1 upgredg.e . . . . 5 𝐸 = (Edg‘𝐺)
21eleq2i 2722 . . . 4 (𝐶𝐸𝐶 ∈ (Edg‘𝐺))
3 edgumgr 26075 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ (Edg‘𝐺)) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (#‘𝐶) = 2))
42, 3sylan2b 491 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (#‘𝐶) = 2))
5 hash2prde 13290 . . . 4 ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (#‘𝐶) = 2) → ∃𝑎𝑏(𝑎𝑏𝐶 = {𝑎, 𝑏}))
6 eleq1 2718 . . . . . . . . . 10 (𝐶 = {𝑎, 𝑏} → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺)))
7 prex 4939 . . . . . . . . . . . 12 {𝑎, 𝑏} ∈ V
87elpw 4197 . . . . . . . . . . 11 ({𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑎, 𝑏} ⊆ (Vtx‘𝐺))
9 vex 3234 . . . . . . . . . . . . 13 𝑎 ∈ V
10 vex 3234 . . . . . . . . . . . . 13 𝑏 ∈ V
119, 10prss 4383 . . . . . . . . . . . 12 ((𝑎𝑉𝑏𝑉) ↔ {𝑎, 𝑏} ⊆ 𝑉)
12 upgredg.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
1312sseq2i 3663 . . . . . . . . . . . 12 ({𝑎, 𝑏} ⊆ 𝑉 ↔ {𝑎, 𝑏} ⊆ (Vtx‘𝐺))
1411, 13sylbbr 226 . . . . . . . . . . 11 ({𝑎, 𝑏} ⊆ (Vtx‘𝐺) → (𝑎𝑉𝑏𝑉))
158, 14sylbi 207 . . . . . . . . . 10 ({𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺) → (𝑎𝑉𝑏𝑉))
166, 15syl6bi 243 . . . . . . . . 9 (𝐶 = {𝑎, 𝑏} → (𝐶 ∈ 𝒫 (Vtx‘𝐺) → (𝑎𝑉𝑏𝑉)))
1716adantrd 483 . . . . . . . 8 (𝐶 = {𝑎, 𝑏} → ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (#‘𝐶) = 2) → (𝑎𝑉𝑏𝑉)))
1817adantl 481 . . . . . . 7 ((𝑎𝑏𝐶 = {𝑎, 𝑏}) → ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (#‘𝐶) = 2) → (𝑎𝑉𝑏𝑉)))
1918imdistanri 727 . . . . . 6 (((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (#‘𝐶) = 2) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏})) → ((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏})))
2019ex 449 . . . . 5 ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (#‘𝐶) = 2) → ((𝑎𝑏𝐶 = {𝑎, 𝑏}) → ((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏}))))
21202eximdv 1888 . . . 4 ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (#‘𝐶) = 2) → (∃𝑎𝑏(𝑎𝑏𝐶 = {𝑎, 𝑏}) → ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏}))))
225, 21mpd 15 . . 3 ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (#‘𝐶) = 2) → ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏})))
234, 22syl 17 . 2 ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏})))
24 r2ex 3090 . 2 (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝐶 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏})))
2523, 24sylibr 224 1 ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝐶 = {𝑎, 𝑏}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523  ∃wex 1744   ∈ wcel 2030   ≠ wne 2823  ∃wrex 2942   ⊆ wss 3607  𝒫 cpw 4191  {cpr 4212  ‘cfv 5926  2c2 11108  #chash 13157  Vtxcvtx 25919  Edgcedg 25984  UMGraphcumgr 26021 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-hash 13158  df-edg 25985  df-umgr 26023 This theorem is referenced by:  usgredg  26136
 Copyright terms: Public domain W3C validator