MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrbi Structured version   Visualization version   GIF version

Theorem umgrbi 26217
Description: Show that an unordered pair is a valid edge in a multigraph. (Contributed by AV, 9-Mar-2021.)
Hypotheses
Ref Expression
umgrbi.x 𝑋𝑉
umgrbi.y 𝑌𝑉
umgrbi.n 𝑋𝑌
Assertion
Ref Expression
umgrbi {𝑋, 𝑌} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Distinct variable groups:   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌

Proof of Theorem umgrbi
StepHypRef Expression
1 umgrbi.x . . . 4 𝑋𝑉
2 umgrbi.y . . . 4 𝑌𝑉
3 prssi 4488 . . . 4 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ⊆ 𝑉)
41, 2, 3mp2an 672 . . 3 {𝑋, 𝑌} ⊆ 𝑉
5 prex 5038 . . . 4 {𝑋, 𝑌} ∈ V
65elpw 4304 . . 3 ({𝑋, 𝑌} ∈ 𝒫 𝑉 ↔ {𝑋, 𝑌} ⊆ 𝑉)
74, 6mpbir 221 . 2 {𝑋, 𝑌} ∈ 𝒫 𝑉
8 umgrbi.n . . . 4 𝑋𝑌
9 hashprg 13384 . . . 4 ((𝑋𝑉𝑌𝑉) → (𝑋𝑌 ↔ (♯‘{𝑋, 𝑌}) = 2))
108, 9mpbii 223 . . 3 ((𝑋𝑉𝑌𝑉) → (♯‘{𝑋, 𝑌}) = 2)
111, 2, 10mp2an 672 . 2 (♯‘{𝑋, 𝑌}) = 2
12 fveq2 6333 . . . 4 (𝑥 = {𝑋, 𝑌} → (♯‘𝑥) = (♯‘{𝑋, 𝑌}))
1312eqeq1d 2773 . . 3 (𝑥 = {𝑋, 𝑌} → ((♯‘𝑥) = 2 ↔ (♯‘{𝑋, 𝑌}) = 2))
1413elrab 3515 . 2 ({𝑋, 𝑌} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ({𝑋, 𝑌} ∈ 𝒫 𝑉 ∧ (♯‘{𝑋, 𝑌}) = 2))
157, 11, 14mpbir2an 690 1 {𝑋, 𝑌} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Colors of variables: wff setvar class
Syntax hints:  wa 382   = wceq 1631  wcel 2145  wne 2943  {crab 3065  wss 3723  𝒫 cpw 4298  {cpr 4319  cfv 6030  2c2 11276  chash 13321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-hash 13322
This theorem is referenced by:  konigsbergiedgw  27428
  Copyright terms: Public domain W3C validator