Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2adedgspth Structured version   Visualization version   GIF version

 Description: In a multigraph, two adjacent edges with different endvertices form a simple path of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.) (Revised by AV, 29-Jan-2021.)
Hypotheses
Ref Expression
umgr2adedgwlk.a (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
umgr2adedgwlk.j (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})
umgr2adedgwlk.k (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})
Assertion
Ref Expression

StepHypRef Expression
1 umgr2adedgwlk.p . 2 𝑃 = ⟨“𝐴𝐵𝐶”⟩
2 umgr2adedgwlk.f . 2 𝐹 = ⟨“𝐽𝐾”⟩
3 umgr2adedgwlk.g . . . . 5 (𝜑𝐺 ∈ UMGraph)
4 umgr2adedgwlk.a . . . . 5 (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
5 3anass 1081 . . . . 5 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
63, 4, 5sylanbrc 701 . . . 4 (𝜑 → (𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
7 umgr2adedgwlk.e . . . . 5 𝐸 = (Edg‘𝐺)
87umgr2adedgwlklem 27085 . . . 4 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
96, 8syl 17 . . 3 (𝜑 → ((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
109simprd 482 . 2 (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
119simpld 477 . 2 (𝜑 → (𝐴𝐵𝐵𝐶))
12 ssid 3765 . . . 4 {𝐴, 𝐵} ⊆ {𝐴, 𝐵}
13 umgr2adedgwlk.j . . . 4 (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})
1412, 13syl5sseqr 3795 . . 3 (𝜑 → {𝐴, 𝐵} ⊆ (𝐼𝐽))
15 ssid 3765 . . . 4 {𝐵, 𝐶} ⊆ {𝐵, 𝐶}
16 umgr2adedgwlk.k . . . 4 (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})
1715, 16syl5sseqr 3795 . . 3 (𝜑 → {𝐵, 𝐶} ⊆ (𝐼𝐾))
1814, 17jca 555 . 2 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾)))
19 eqid 2760 . 2 (Vtx‘𝐺) = (Vtx‘𝐺)
20 umgr2adedgwlk.i . 2 𝐼 = (iEdg‘𝐺)
21 fveq2 6353 . . . . . . . . 9 (𝐾 = 𝐽 → (𝐼𝐾) = (𝐼𝐽))
2221eqcoms 2768 . . . . . . . 8 (𝐽 = 𝐾 → (𝐼𝐾) = (𝐼𝐽))
2322eqeq1d 2762 . . . . . . 7 (𝐽 = 𝐾 → ((𝐼𝐾) = {𝐵, 𝐶} ↔ (𝐼𝐽) = {𝐵, 𝐶}))
24 eqtr2 2780 . . . . . . . 8 (((𝐼𝐽) = {𝐵, 𝐶} ∧ (𝐼𝐽) = {𝐴, 𝐵}) → {𝐵, 𝐶} = {𝐴, 𝐵})
2524ex 449 . . . . . . 7 ((𝐼𝐽) = {𝐵, 𝐶} → ((𝐼𝐽) = {𝐴, 𝐵} → {𝐵, 𝐶} = {𝐴, 𝐵}))
2623, 25syl6bi 243 . . . . . 6 (𝐽 = 𝐾 → ((𝐼𝐾) = {𝐵, 𝐶} → ((𝐼𝐽) = {𝐴, 𝐵} → {𝐵, 𝐶} = {𝐴, 𝐵})))
2726com13 88 . . . . 5 ((𝐼𝐽) = {𝐴, 𝐵} → ((𝐼𝐾) = {𝐵, 𝐶} → (𝐽 = 𝐾 → {𝐵, 𝐶} = {𝐴, 𝐵})))
2813, 16, 27sylc 65 . . . 4 (𝜑 → (𝐽 = 𝐾 → {𝐵, 𝐶} = {𝐴, 𝐵}))
29 eqcom 2767 . . . . . 6 ({𝐵, 𝐶} = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = {𝐵, 𝐶})
30 prcom 4411 . . . . . . 7 {𝐵, 𝐶} = {𝐶, 𝐵}
3130eqeq2i 2772 . . . . . 6 ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ {𝐴, 𝐵} = {𝐶, 𝐵})
3229, 31bitri 264 . . . . 5 ({𝐵, 𝐶} = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = {𝐶, 𝐵})
3319, 7umgrpredgv 26255 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
3433simpld 477 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 ∈ (Vtx‘𝐺))
3534ex 449 . . . . . . . . 9 (𝐺 ∈ UMGraph → ({𝐴, 𝐵} ∈ 𝐸𝐴 ∈ (Vtx‘𝐺)))
3619, 7umgrpredgv 26255 . . . . . . . . . . 11 ((𝐺 ∈ UMGraph ∧ {𝐵, 𝐶} ∈ 𝐸) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
3736simprd 482 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ {𝐵, 𝐶} ∈ 𝐸) → 𝐶 ∈ (Vtx‘𝐺))
3837ex 449 . . . . . . . . 9 (𝐺 ∈ UMGraph → ({𝐵, 𝐶} ∈ 𝐸𝐶 ∈ (Vtx‘𝐺)))
3935, 38anim12d 587 . . . . . . . 8 (𝐺 ∈ UMGraph → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
403, 4, 39sylc 65 . . . . . . 7 (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
41 preqr1g 4529 . . . . . . 7 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → ({𝐴, 𝐵} = {𝐶, 𝐵} → 𝐴 = 𝐶))
4240, 41syl 17 . . . . . 6 (𝜑 → ({𝐴, 𝐵} = {𝐶, 𝐵} → 𝐴 = 𝐶))
43 umgr2adedgspth.n . . . . . 6 (𝜑𝐴𝐶)
44 eqneqall 2943 . . . . . 6 (𝐴 = 𝐶 → (𝐴𝐶𝐽𝐾))
4542, 43, 44syl6ci 71 . . . . 5 (𝜑 → ({𝐴, 𝐵} = {𝐶, 𝐵} → 𝐽𝐾))
4632, 45syl5bi 232 . . . 4 (𝜑 → ({𝐵, 𝐶} = {𝐴, 𝐵} → 𝐽𝐾))
4728, 46syld 47 . . 3 (𝜑 → (𝐽 = 𝐾𝐽𝐾))
48 neqne 2940 . . 3 𝐽 = 𝐾𝐽𝐾)
4947, 48pm2.61d1 171 . 2 (𝜑𝐽𝐾)
501, 2, 10, 11, 18, 19, 20, 49, 432spthd 27082 1 (𝜑𝐹(SPaths‘𝐺)𝑃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932   ⊆ wss 3715  {cpr 4323   class class class wbr 4804  ‘cfv 6049  ⟨“cs2 13806  ⟨“cs3 13807  Vtxcvtx 26094  iEdgciedg 26095  Edgcedg 26159  UMGraphcumgr 26196  SPathscspths 26840 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-fzo 12680  df-hash 13332  df-word 13505  df-concat 13507  df-s1 13508  df-s2 13813  df-s3 13814  df-edg 26160  df-umgr 26198  df-wlks 26726  df-trls 26820  df-spths 26844 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator