Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmshftlem Structured version   Visualization version   GIF version

Theorem ulmshftlem 24362
 Description: Lemma for ulmshft 24363. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ulmshft.z 𝑍 = (ℤ𝑀)
ulmshft.w 𝑊 = (ℤ‘(𝑀 + 𝐾))
ulmshft.m (𝜑𝑀 ∈ ℤ)
ulmshft.k (𝜑𝐾 ∈ ℤ)
ulmshft.f (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
ulmshft.h (𝜑𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
Assertion
Ref Expression
ulmshftlem (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
Distinct variable groups:   𝜑,𝑛   𝑛,𝑊   𝑛,𝐹   𝑛,𝐾   𝑆,𝑛
Allowed substitution hints:   𝐺(𝑛)   𝐻(𝑛)   𝑀(𝑛)   𝑍(𝑛)

Proof of Theorem ulmshftlem
Dummy variables 𝑖 𝑗 𝑘 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmshft.z . . . . . 6 𝑍 = (ℤ𝑀)
2 ulmshft.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
32ad2antrr 697 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
4 ulmshft.f . . . . . . 7 (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
54ad2antrr 697 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
6 eqidd 2771 . . . . . 6 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ (𝑚𝑍𝑧𝑆)) → ((𝐹𝑚)‘𝑧) = ((𝐹𝑚)‘𝑧))
7 eqidd 2771 . . . . . 6 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
8 simplr 744 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → 𝐹(⇝𝑢𝑆)𝐺)
9 simpr 471 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
101, 3, 5, 6, 7, 8, 9ulmi 24359 . . . . 5 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → ∃𝑖𝑍𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥)
11 simpr 471 . . . . . . . . . 10 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → 𝑖𝑍)
1211, 1syl6eleq 2859 . . . . . . . . 9 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
13 ulmshft.k . . . . . . . . . 10 (𝜑𝐾 ∈ ℤ)
1413ad3antrrr 701 . . . . . . . . 9 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → 𝐾 ∈ ℤ)
15 eluzadd 11916 . . . . . . . . 9 ((𝑖 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑖 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
1612, 14, 15syl2anc 565 . . . . . . . 8 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → (𝑖 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
17 ulmshft.w . . . . . . . 8 𝑊 = (ℤ‘(𝑀 + 𝐾))
1816, 17syl6eleqr 2860 . . . . . . 7 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → (𝑖 + 𝐾) ∈ 𝑊)
19 eluzelz 11897 . . . . . . . . . . . 12 (𝑖 ∈ (ℤ𝑀) → 𝑖 ∈ ℤ)
2012, 19syl 17 . . . . . . . . . . 11 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → 𝑖 ∈ ℤ)
2120adantr 466 . . . . . . . . . 10 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → 𝑖 ∈ ℤ)
2213adantr 466 . . . . . . . . . . 11 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝐾 ∈ ℤ)
2322ad3antrrr 701 . . . . . . . . . 10 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → 𝐾 ∈ ℤ)
24 simpr 471 . . . . . . . . . 10 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → 𝑘 ∈ (ℤ‘(𝑖 + 𝐾)))
25 eluzsub 11917 . . . . . . . . . 10 ((𝑖 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → (𝑘𝐾) ∈ (ℤ𝑖))
2621, 23, 24, 25syl3anc 1475 . . . . . . . . 9 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → (𝑘𝐾) ∈ (ℤ𝑖))
27 fveq2 6332 . . . . . . . . . . . . . 14 (𝑚 = (𝑘𝐾) → (𝐹𝑚) = (𝐹‘(𝑘𝐾)))
2827fveq1d 6334 . . . . . . . . . . . . 13 (𝑚 = (𝑘𝐾) → ((𝐹𝑚)‘𝑧) = ((𝐹‘(𝑘𝐾))‘𝑧))
2928fvoveq1d 6814 . . . . . . . . . . . 12 (𝑚 = (𝑘𝐾) → (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) = (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))))
3029breq1d 4794 . . . . . . . . . . 11 (𝑚 = (𝑘𝐾) → ((abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3130ralbidv 3134 . . . . . . . . . 10 (𝑚 = (𝑘𝐾) → (∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3231rspcv 3454 . . . . . . . . 9 ((𝑘𝐾) ∈ (ℤ𝑖) → (∀𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3326, 32syl 17 . . . . . . . 8 (((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑖 + 𝐾))) → (∀𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3433ralrimdva 3117 . . . . . . 7 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → (∀𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∀𝑘 ∈ (ℤ‘(𝑖 + 𝐾))∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
35 fveq2 6332 . . . . . . . . 9 (𝑗 = (𝑖 + 𝐾) → (ℤ𝑗) = (ℤ‘(𝑖 + 𝐾)))
3635raleqdv 3292 . . . . . . . 8 (𝑗 = (𝑖 + 𝐾) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ‘(𝑖 + 𝐾))∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3736rspcev 3458 . . . . . . 7 (((𝑖 + 𝐾) ∈ 𝑊 ∧ ∀𝑘 ∈ (ℤ‘(𝑖 + 𝐾))∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥) → ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥)
3818, 34, 37syl6an 655 . . . . . 6 ((((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) ∧ 𝑖𝑍) → (∀𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
3938rexlimdva 3178 . . . . 5 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → (∃𝑖𝑍𝑚 ∈ (ℤ𝑖)∀𝑧𝑆 (abs‘(((𝐹𝑚)‘𝑧) − (𝐺𝑧))) < 𝑥 → ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
4010, 39mpd 15 . . . 4 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑥 ∈ ℝ+) → ∃𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥)
4140ralrimiva 3114 . . 3 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → ∀𝑥 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥)
422, 13zaddcld 11687 . . . . 5 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
4342adantr 466 . . . 4 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → (𝑀 + 𝐾) ∈ ℤ)
444adantr 466 . . . . . . . 8 ((𝜑𝑛𝑊) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
452adantr 466 . . . . . . . . . 10 ((𝜑𝑛𝑊) → 𝑀 ∈ ℤ)
4613adantr 466 . . . . . . . . . 10 ((𝜑𝑛𝑊) → 𝐾 ∈ ℤ)
47 simpr 471 . . . . . . . . . . 11 ((𝜑𝑛𝑊) → 𝑛𝑊)
4847, 17syl6eleq 2859 . . . . . . . . . 10 ((𝜑𝑛𝑊) → 𝑛 ∈ (ℤ‘(𝑀 + 𝐾)))
49 eluzsub 11917 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑛 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑛𝐾) ∈ (ℤ𝑀))
5045, 46, 48, 49syl3anc 1475 . . . . . . . . 9 ((𝜑𝑛𝑊) → (𝑛𝐾) ∈ (ℤ𝑀))
5150, 1syl6eleqr 2860 . . . . . . . 8 ((𝜑𝑛𝑊) → (𝑛𝐾) ∈ 𝑍)
5244, 51ffvelrnd 6503 . . . . . . 7 ((𝜑𝑛𝑊) → (𝐹‘(𝑛𝐾)) ∈ (ℂ ↑𝑚 𝑆))
53 eqid 2770 . . . . . . 7 (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))) = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))
5452, 53fmptd 6527 . . . . . 6 (𝜑 → (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))):𝑊⟶(ℂ ↑𝑚 𝑆))
55 ulmshft.h . . . . . . 7 (𝜑𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
5655feq1d 6170 . . . . . 6 (𝜑 → (𝐻:𝑊⟶(ℂ ↑𝑚 𝑆) ↔ (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))):𝑊⟶(ℂ ↑𝑚 𝑆)))
5754, 56mpbird 247 . . . . 5 (𝜑𝐻:𝑊⟶(ℂ ↑𝑚 𝑆))
5857adantr 466 . . . 4 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝐻:𝑊⟶(ℂ ↑𝑚 𝑆))
5955ad2antrr 697 . . . . . . 7 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → 𝐻 = (𝑛𝑊 ↦ (𝐹‘(𝑛𝐾))))
6059fveq1d 6334 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → (𝐻𝑘) = ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘𝑘))
61 fvoveq1 6815 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹‘(𝑛𝐾)) = (𝐹‘(𝑘𝐾)))
62 fvex 6342 . . . . . . . 8 (𝐹‘(𝑘𝐾)) ∈ V
6361, 53, 62fvmpt 6424 . . . . . . 7 (𝑘𝑊 → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘𝑘) = (𝐹‘(𝑘𝐾)))
6463ad2antrl 699 . . . . . 6 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → ((𝑛𝑊 ↦ (𝐹‘(𝑛𝐾)))‘𝑘) = (𝐹‘(𝑘𝐾)))
6560, 64eqtrd 2804 . . . . 5 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → (𝐻𝑘) = (𝐹‘(𝑘𝐾)))
6665fveq1d 6334 . . . 4 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ (𝑘𝑊𝑧𝑆)) → ((𝐻𝑘)‘𝑧) = ((𝐹‘(𝑘𝐾))‘𝑧))
67 eqidd 2771 . . . 4 (((𝜑𝐹(⇝𝑢𝑆)𝐺) ∧ 𝑧𝑆) → (𝐺𝑧) = (𝐺𝑧))
68 ulmcl 24354 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
6968adantl 467 . . . 4 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝐺:𝑆⟶ℂ)
70 ulmscl 24352 . . . . 5 (𝐹(⇝𝑢𝑆)𝐺𝑆 ∈ V)
7170adantl 467 . . . 4 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝑆 ∈ V)
7217, 43, 58, 66, 67, 69, 71ulm2 24358 . . 3 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → (𝐻(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑊𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹‘(𝑘𝐾))‘𝑧) − (𝐺𝑧))) < 𝑥))
7341, 72mpbird 247 . 2 ((𝜑𝐹(⇝𝑢𝑆)𝐺) → 𝐻(⇝𝑢𝑆)𝐺)
7473ex 397 1 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺𝐻(⇝𝑢𝑆)𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1630   ∈ wcel 2144  ∀wral 3060  ∃wrex 3061  Vcvv 3349   class class class wbr 4784   ↦ cmpt 4861  ⟶wf 6027  ‘cfv 6031  (class class class)co 6792   ↑𝑚 cmap 8008  ℂcc 10135   + caddc 10140   < clt 10275   − cmin 10467  ℤcz 11578  ℤ≥cuz 11887  ℝ+crp 12034  abscabs 14181  ⇝𝑢culm 24349 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-ulm 24350 This theorem is referenced by:  ulmshft  24363
 Copyright terms: Public domain W3C validator