![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ulmf2 | Structured version Visualization version GIF version |
Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 18-Mar-2015.) |
Ref | Expression |
---|---|
ulmf2 | ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulmpm 24356 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐹 ∈ ((ℂ ↑𝑚 𝑆) ↑pm ℤ)) | |
2 | ovex 6842 | . . . . . 6 ⊢ (ℂ ↑𝑚 𝑆) ∈ V | |
3 | zex 11598 | . . . . . 6 ⊢ ℤ ∈ V | |
4 | 2, 3 | elpm2 8057 | . . . . 5 ⊢ (𝐹 ∈ ((ℂ ↑𝑚 𝑆) ↑pm ℤ) ↔ (𝐹:dom 𝐹⟶(ℂ ↑𝑚 𝑆) ∧ dom 𝐹 ⊆ ℤ)) |
5 | 4 | simplbi 478 | . . . 4 ⊢ (𝐹 ∈ ((ℂ ↑𝑚 𝑆) ↑pm ℤ) → 𝐹:dom 𝐹⟶(ℂ ↑𝑚 𝑆)) |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐹:dom 𝐹⟶(ℂ ↑𝑚 𝑆)) |
7 | 6 | adantl 473 | . 2 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:dom 𝐹⟶(ℂ ↑𝑚 𝑆)) |
8 | fndm 6151 | . . . 4 ⊢ (𝐹 Fn 𝑍 → dom 𝐹 = 𝑍) | |
9 | 8 | adantr 472 | . . 3 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → dom 𝐹 = 𝑍) |
10 | 9 | feq2d 6192 | . 2 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → (𝐹:dom 𝐹⟶(ℂ ↑𝑚 𝑆) ↔ 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))) |
11 | 7, 10 | mpbid 222 | 1 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 class class class wbr 4804 dom cdm 5266 Fn wfn 6044 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 ↑𝑚 cmap 8025 ↑pm cpm 8026 ℂcc 10146 ℤcz 11589 ⇝𝑢culm 24349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-map 8027 df-pm 8028 df-neg 10481 df-z 11590 df-uz 11900 df-ulm 24350 |
This theorem is referenced by: ulmdvlem1 24373 ulmdvlem2 24374 ulmdvlem3 24375 mtestbdd 24378 mbfulm 24379 iblulm 24380 itgulm 24381 itgulm2 24382 lgamgulm2 24982 lgamcvglem 24986 |
Copyright terms: Public domain | W3C validator |