Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrvtxedgiedgb Structured version   Visualization version   GIF version

Theorem uhgrvtxedgiedgb 26201
 Description: In a hypergraph, a vertex is incident with an edge iff it is contained in an element of the range of the edge function. (Contributed by AV, 24-Dec-2020.)
Hypotheses
Ref Expression
uhgrvtxedgiedgb.v 𝑉 = (Vtx‘𝐺)
uhgrvtxedgiedgb.i 𝐼 = (iEdg‘𝐺)
uhgrvtxedgiedgb.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uhgrvtxedgiedgb ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖) ↔ ∃𝑒𝐸 𝑈𝑒))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐼,𝑖   𝑈,𝑒,𝑖
Allowed substitution hints:   𝐸(𝑖)   𝐺(𝑒,𝑖)   𝑉(𝑒,𝑖)

Proof of Theorem uhgrvtxedgiedgb
StepHypRef Expression
1 edgval 26111 . . . . . . 7 (Edg‘𝐺) = ran (iEdg‘𝐺)
21a1i 11 . . . . . 6 (𝐺 ∈ UHGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
3 uhgrvtxedgiedgb.e . . . . . 6 𝐸 = (Edg‘𝐺)
4 uhgrvtxedgiedgb.i . . . . . . 7 𝐼 = (iEdg‘𝐺)
54rneqi 5495 . . . . . 6 ran 𝐼 = ran (iEdg‘𝐺)
62, 3, 53eqtr4g 2807 . . . . 5 (𝐺 ∈ UHGraph → 𝐸 = ran 𝐼)
76rexeqdv 3272 . . . 4 (𝐺 ∈ UHGraph → (∃𝑒𝐸 𝑈𝑒 ↔ ∃𝑒 ∈ ran 𝐼 𝑈𝑒))
84uhgrfun 26131 . . . . . 6 (𝐺 ∈ UHGraph → Fun 𝐼)
9 funfn 6067 . . . . . 6 (Fun 𝐼𝐼 Fn dom 𝐼)
108, 9sylib 208 . . . . 5 (𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼)
11 eleq2 2816 . . . . . 6 (𝑒 = (𝐼𝑖) → (𝑈𝑒𝑈 ∈ (𝐼𝑖)))
1211rexrn 6512 . . . . 5 (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼 𝑈𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
1310, 12syl 17 . . . 4 (𝐺 ∈ UHGraph → (∃𝑒 ∈ ran 𝐼 𝑈𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
147, 13bitrd 268 . . 3 (𝐺 ∈ UHGraph → (∃𝑒𝐸 𝑈𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
1514adantr 472 . 2 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑒𝐸 𝑈𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
1615bicomd 213 1 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖) ↔ ∃𝑒𝐸 𝑈𝑒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1620   ∈ wcel 2127  ∃wrex 3039  dom cdm 5254  ran crn 5255  Fun wfun 6031   Fn wfn 6032  ‘cfv 6037  Vtxcvtx 26044  iEdgciedg 26045  Edgcedg 26109  UHGraphcuhgr 26121 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ral 3043  df-rex 3044  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-fv 6045  df-edg 26110  df-uhgr 26123 This theorem is referenced by:  vtxduhgr0edgnel  26571
 Copyright terms: Public domain W3C validator