![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrstrrepe | Structured version Visualization version GIF version |
Description: Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a hypergraph. Instead of requiring (𝜑 → 𝐺 Struct 𝑋), it would be sufficient to require (𝜑 → Fun (𝐺 ∖ {∅})) and (𝜑 → 𝐺 ∈ V). (Contributed by AV, 18-Jan-2020.) (Revised by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
Ref | Expression |
---|---|
uhgrstrrepe.v | ⊢ 𝑉 = (Base‘𝐺) |
uhgrstrrepe.i | ⊢ 𝐼 = (.ef‘ndx) |
uhgrstrrepe.s | ⊢ (𝜑 → 𝐺 Struct 𝑋) |
uhgrstrrepe.b | ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) |
uhgrstrrepe.w | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
uhgrstrrepe.e | ⊢ (𝜑 → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) |
Ref | Expression |
---|---|
uhgrstrrepe | ⊢ (𝜑 → (𝐺 sSet 〈𝐼, 𝐸〉) ∈ UHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrstrrepe.e | . . . 4 ⊢ (𝜑 → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})) | |
2 | uhgrstrrepe.i | . . . . . . . . 9 ⊢ 𝐼 = (.ef‘ndx) | |
3 | uhgrstrrepe.s | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 Struct 𝑋) | |
4 | uhgrstrrepe.b | . . . . . . . . 9 ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) | |
5 | uhgrstrrepe.w | . . . . . . . . 9 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
6 | 2, 3, 4, 5 | setsvtx 26148 | . . . . . . . 8 ⊢ (𝜑 → (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (Base‘𝐺)) |
7 | uhgrstrrepe.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝐺) | |
8 | 6, 7 | syl6eqr 2813 | . . . . . . 7 ⊢ (𝜑 → (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = 𝑉) |
9 | 8 | pweqd 4308 | . . . . . 6 ⊢ (𝜑 → 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = 𝒫 𝑉) |
10 | 9 | difeq1d 3871 | . . . . 5 ⊢ (𝜑 → (𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∖ {∅}) = (𝒫 𝑉 ∖ {∅})) |
11 | 10 | feq3d 6194 | . . . 4 ⊢ (𝜑 → (𝐸:dom 𝐸⟶(𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∖ {∅}) ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))) |
12 | 1, 11 | mpbird 247 | . . 3 ⊢ (𝜑 → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∖ {∅})) |
13 | 2, 3, 4, 5 | setsiedg 26149 | . . . 4 ⊢ (𝜑 → (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) = 𝐸) |
14 | 13 | dmeqd 5482 | . . . 4 ⊢ (𝜑 → dom (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) = dom 𝐸) |
15 | 13, 14 | feq12d 6195 | . . 3 ⊢ (𝜑 → ((iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)):dom (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉))⟶(𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∖ {∅}) ↔ 𝐸:dom 𝐸⟶(𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∖ {∅}))) |
16 | 12, 15 | mpbird 247 | . 2 ⊢ (𝜑 → (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)):dom (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉))⟶(𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∖ {∅})) |
17 | ovex 6843 | . . 3 ⊢ (𝐺 sSet 〈𝐼, 𝐸〉) ∈ V | |
18 | eqid 2761 | . . . 4 ⊢ (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) | |
19 | eqid 2761 | . . . 4 ⊢ (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) | |
20 | 18, 19 | isuhgr 26176 | . . 3 ⊢ ((𝐺 sSet 〈𝐼, 𝐸〉) ∈ V → ((𝐺 sSet 〈𝐼, 𝐸〉) ∈ UHGraph ↔ (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)):dom (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉))⟶(𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∖ {∅}))) |
21 | 17, 20 | mp1i 13 | . 2 ⊢ (𝜑 → ((𝐺 sSet 〈𝐼, 𝐸〉) ∈ UHGraph ↔ (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)):dom (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉))⟶(𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∖ {∅}))) |
22 | 16, 21 | mpbird 247 | 1 ⊢ (𝜑 → (𝐺 sSet 〈𝐼, 𝐸〉) ∈ UHGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2140 Vcvv 3341 ∖ cdif 3713 ∅c0 4059 𝒫 cpw 4303 {csn 4322 〈cop 4328 class class class wbr 4805 dom cdm 5267 ⟶wf 6046 ‘cfv 6050 (class class class)co 6815 Struct cstr 16076 ndxcnx 16077 sSet csts 16078 Basecbs 16080 .efcedgf 26088 Vtxcvtx 26095 iEdgciedg 26096 UHGraphcuhgr 26172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-card 8976 df-cda 9203 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-9 11299 df-n0 11506 df-xnn0 11577 df-z 11591 df-dec 11707 df-uz 11901 df-fz 12541 df-hash 13333 df-struct 16082 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-edgf 26089 df-vtx 26097 df-iedg 26098 df-uhgr 26174 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |