![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrspanop | Structured version Visualization version GIF version |
Description: A spanning subgraph of a hypergraph represented by an ordered pair is a hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.) |
Ref | Expression |
---|---|
uhgrspanop.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspanop.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uhgrspanop | ⊢ (𝐺 ∈ UHGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrspanop.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | uhgrspanop.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | opex 4962 | . . 3 ⊢ 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ V | |
4 | 3 | a1i 11 | . 2 ⊢ (𝐺 ∈ UHGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ V) |
5 | fvex 6239 | . . . . 5 ⊢ (Vtx‘𝐺) ∈ V | |
6 | 1, 5 | eqeltri 2726 | . . . 4 ⊢ 𝑉 ∈ V |
7 | fvex 6239 | . . . . . 6 ⊢ (iEdg‘𝐺) ∈ V | |
8 | 2, 7 | eqeltri 2726 | . . . . 5 ⊢ 𝐸 ∈ V |
9 | 8 | resex 5478 | . . . 4 ⊢ (𝐸 ↾ 𝐴) ∈ V |
10 | opvtxfv 25929 | . . . 4 ⊢ ((𝑉 ∈ V ∧ (𝐸 ↾ 𝐴) ∈ V) → (Vtx‘〈𝑉, (𝐸 ↾ 𝐴)〉) = 𝑉) | |
11 | 6, 9, 10 | mp2an 708 | . . 3 ⊢ (Vtx‘〈𝑉, (𝐸 ↾ 𝐴)〉) = 𝑉 |
12 | 11 | a1i 11 | . 2 ⊢ (𝐺 ∈ UHGraph → (Vtx‘〈𝑉, (𝐸 ↾ 𝐴)〉) = 𝑉) |
13 | opiedgfv 25932 | . . . 4 ⊢ ((𝑉 ∈ V ∧ (𝐸 ↾ 𝐴) ∈ V) → (iEdg‘〈𝑉, (𝐸 ↾ 𝐴)〉) = (𝐸 ↾ 𝐴)) | |
14 | 6, 9, 13 | mp2an 708 | . . 3 ⊢ (iEdg‘〈𝑉, (𝐸 ↾ 𝐴)〉) = (𝐸 ↾ 𝐴) |
15 | 14 | a1i 11 | . 2 ⊢ (𝐺 ∈ UHGraph → (iEdg‘〈𝑉, (𝐸 ↾ 𝐴)〉) = (𝐸 ↾ 𝐴)) |
16 | id 22 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph) | |
17 | 1, 2, 4, 12, 15, 16 | uhgrspan 26229 | 1 ⊢ (𝐺 ∈ UHGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UHGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 Vcvv 3231 〈cop 4216 ↾ cres 5145 ‘cfv 5926 Vtxcvtx 25919 iEdgciedg 25920 UHGraphcuhgr 25996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-1st 7210 df-2nd 7211 df-vtx 25921 df-iedg 25922 df-edg 25985 df-uhgr 25998 df-subgr 26205 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |