MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspanop Structured version   Visualization version   GIF version

Theorem uhgrspanop 26233
Description: A spanning subgraph of a hypergraph represented by an ordered pair is a hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.)
Hypotheses
Ref Expression
uhgrspanop.v 𝑉 = (Vtx‘𝐺)
uhgrspanop.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgrspanop (𝐺 ∈ UHGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ UHGraph)

Proof of Theorem uhgrspanop
StepHypRef Expression
1 uhgrspanop.v . 2 𝑉 = (Vtx‘𝐺)
2 uhgrspanop.e . 2 𝐸 = (iEdg‘𝐺)
3 opex 4962 . . 3 𝑉, (𝐸𝐴)⟩ ∈ V
43a1i 11 . 2 (𝐺 ∈ UHGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ V)
5 fvex 6239 . . . . 5 (Vtx‘𝐺) ∈ V
61, 5eqeltri 2726 . . . 4 𝑉 ∈ V
7 fvex 6239 . . . . . 6 (iEdg‘𝐺) ∈ V
82, 7eqeltri 2726 . . . . 5 𝐸 ∈ V
98resex 5478 . . . 4 (𝐸𝐴) ∈ V
10 opvtxfv 25929 . . . 4 ((𝑉 ∈ V ∧ (𝐸𝐴) ∈ V) → (Vtx‘⟨𝑉, (𝐸𝐴)⟩) = 𝑉)
116, 9, 10mp2an 708 . . 3 (Vtx‘⟨𝑉, (𝐸𝐴)⟩) = 𝑉
1211a1i 11 . 2 (𝐺 ∈ UHGraph → (Vtx‘⟨𝑉, (𝐸𝐴)⟩) = 𝑉)
13 opiedgfv 25932 . . . 4 ((𝑉 ∈ V ∧ (𝐸𝐴) ∈ V) → (iEdg‘⟨𝑉, (𝐸𝐴)⟩) = (𝐸𝐴))
146, 9, 13mp2an 708 . . 3 (iEdg‘⟨𝑉, (𝐸𝐴)⟩) = (𝐸𝐴)
1514a1i 11 . 2 (𝐺 ∈ UHGraph → (iEdg‘⟨𝑉, (𝐸𝐴)⟩) = (𝐸𝐴))
16 id 22 . 2 (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph)
171, 2, 4, 12, 15, 16uhgrspan 26229 1 (𝐺 ∈ UHGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  Vcvv 3231  cop 4216  cres 5145  cfv 5926  Vtxcvtx 25919  iEdgciedg 25920  UHGraphcuhgr 25996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-1st 7210  df-2nd 7211  df-vtx 25921  df-iedg 25922  df-edg 25985  df-uhgr 25998  df-subgr 26205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator