![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrfun | Structured version Visualization version GIF version |
Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 15-Dec-2020.) |
Ref | Expression |
---|---|
uhgrfun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
uhgrfun | ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | uhgrfun.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 1, 2 | uhgrf 26002 | . 2 ⊢ (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | 3 | ffund 6087 | 1 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ∖ cdif 3604 ∅c0 3948 𝒫 cpw 4191 {csn 4210 dom cdm 5143 Fun wfun 5920 ‘cfv 5926 Vtxcvtx 25919 iEdgciedg 25920 UHGraphcuhgr 25996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-uhgr 25998 |
This theorem is referenced by: lpvtx 26008 upgrle2 26045 uhgredgiedgb 26066 uhgriedg0edg0 26067 uhgrvtxedgiedgb 26076 edglnl 26083 numedglnl 26084 uhgr2edg 26145 ushgredgedg 26166 ushgredgedgloop 26168 0uhgrsubgr 26216 uhgrsubgrself 26217 subgruhgrfun 26219 subgruhgredgd 26221 subumgredg2 26222 subupgr 26224 uhgrspansubgrlem 26227 uhgrspansubgr 26228 uhgrspan1 26240 upgrreslem 26241 umgrreslem 26242 upgrres 26243 umgrres 26244 vtxduhgr0e 26430 vtxduhgrun 26435 vtxduhgrfiun 26436 finsumvtxdg2ssteplem1 26497 upgrewlkle2 26558 upgredginwlk 26588 wlkiswwlks1 26821 wlkiswwlksupgr2 26831 umgrwwlks2on 26923 vdn0conngrumgrv2 27174 eulerpathpr 27218 eulercrct 27220 |
Copyright terms: Public domain | W3C validator |