Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgredgss Structured version   Visualization version   GIF version

Theorem uhgredgss 26247
 Description: The set of edges of a hypergraph is a subset of the power set of vertices without the empty set. (Contributed by AV, 29-Nov-2020.)
Assertion
Ref Expression
uhgredgss (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}))

Proof of Theorem uhgredgss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uhgredgn0 26244 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
21ex 397 . 2 (𝐺 ∈ UHGraph → (𝑥 ∈ (Edg‘𝐺) → 𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})))
32ssrdv 3758 1 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2145   ∖ cdif 3720   ⊆ wss 3723  ∅c0 4063  𝒫 cpw 4298  {csn 4317  ‘cfv 6030  Vtxcvtx 26095  Edgcedg 26160  UHGraphcuhgr 26172 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-fv 6038  df-edg 26161  df-uhgr 26174 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator