![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgredgn0 | Structured version Visualization version GIF version |
Description: An edge of a hypergraph is a nonempty subset of vertices. (Contributed by AV, 28-Nov-2020.) |
Ref | Expression |
---|---|
uhgredgn0 | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgval 26132 | . . 3 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
2 | eqid 2752 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | eqid 2752 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
4 | 2, 3 | uhgrf 26148 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
5 | frn 6206 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) → ran (iEdg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐺 ∈ UHGraph → ran (iEdg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
7 | 1, 6 | syl5eqss 3782 | . 2 ⊢ (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
8 | 7 | sselda 3736 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2131 ∖ cdif 3704 ⊆ wss 3707 ∅c0 4050 𝒫 cpw 4294 {csn 4313 dom cdm 5258 ran crn 5259 ⟶wf 6037 ‘cfv 6041 Vtxcvtx 26065 iEdgciedg 26066 Edgcedg 26130 UHGraphcuhgr 26142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-fv 6049 df-edg 26131 df-uhgr 26144 |
This theorem is referenced by: edguhgr 26215 uhgredgss 26217 uhgrvd00 26632 |
Copyright terms: Public domain | W3C validator |