Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr3cyclexlem Structured version   Visualization version   GIF version

Theorem uhgr3cyclexlem 27333
 Description: Lemma for uhgr3cyclex 27334. (Contributed by AV, 12-Feb-2021.)
Hypotheses
Ref Expression
uhgr3cyclex.v 𝑉 = (Vtx‘𝐺)
uhgr3cyclex.e 𝐸 = (Edg‘𝐺)
uhgr3cyclex.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgr3cyclexlem ((((𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)))) → 𝐽𝐾)

Proof of Theorem uhgr3cyclexlem
StepHypRef Expression
1 fveq2 6352 . . . . . . . . 9 (𝐽 = 𝐾 → (𝐼𝐽) = (𝐼𝐾))
21eqeq2d 2770 . . . . . . . 8 (𝐽 = 𝐾 → ({𝐵, 𝐶} = (𝐼𝐽) ↔ {𝐵, 𝐶} = (𝐼𝐾)))
3 eqeq2 2771 . . . . . . . . . . . 12 ((𝐼𝐾) = {𝐶, 𝐴} → ({𝐵, 𝐶} = (𝐼𝐾) ↔ {𝐵, 𝐶} = {𝐶, 𝐴}))
43eqcoms 2768 . . . . . . . . . . 11 ({𝐶, 𝐴} = (𝐼𝐾) → ({𝐵, 𝐶} = (𝐼𝐾) ↔ {𝐵, 𝐶} = {𝐶, 𝐴}))
5 prcom 4411 . . . . . . . . . . . . . 14 {𝐶, 𝐴} = {𝐴, 𝐶}
65eqeq1i 2765 . . . . . . . . . . . . 13 ({𝐶, 𝐴} = {𝐵, 𝐶} ↔ {𝐴, 𝐶} = {𝐵, 𝐶})
7 simpl 474 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝐵𝑉) → 𝐴𝑉)
8 simpr 479 . . . . . . . . . . . . . . 15 ((𝐴𝑉𝐵𝑉) → 𝐵𝑉)
97, 8preq1b 4522 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐵𝑉) → ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵))
109biimpcd 239 . . . . . . . . . . . . 13 ({𝐴, 𝐶} = {𝐵, 𝐶} → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵))
116, 10sylbi 207 . . . . . . . . . . . 12 ({𝐶, 𝐴} = {𝐵, 𝐶} → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵))
1211eqcoms 2768 . . . . . . . . . . 11 ({𝐵, 𝐶} = {𝐶, 𝐴} → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵))
134, 12syl6bi 243 . . . . . . . . . 10 ({𝐶, 𝐴} = (𝐼𝐾) → ({𝐵, 𝐶} = (𝐼𝐾) → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵)))
1413adantl 473 . . . . . . . . 9 ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)) → ({𝐵, 𝐶} = (𝐼𝐾) → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵)))
1514com12 32 . . . . . . . 8 ({𝐵, 𝐶} = (𝐼𝐾) → ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)) → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵)))
162, 15syl6bi 243 . . . . . . 7 (𝐽 = 𝐾 → ({𝐵, 𝐶} = (𝐼𝐽) → ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)) → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵))))
1716adantld 484 . . . . . 6 (𝐽 = 𝐾 → ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) → ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)) → ((𝐴𝑉𝐵𝑉) → 𝐴 = 𝐵))))
1817com14 96 . . . . 5 ((𝐴𝑉𝐵𝑉) → ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) → ((𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)) → (𝐽 = 𝐾𝐴 = 𝐵))))
1918imp32 448 . . . 4 (((𝐴𝑉𝐵𝑉) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)))) → (𝐽 = 𝐾𝐴 = 𝐵))
2019necon3d 2953 . . 3 (((𝐴𝑉𝐵𝑉) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)))) → (𝐴𝐵𝐽𝐾))
2120impancom 455 . 2 (((𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾))) → 𝐽𝐾))
2221imp 444 1 ((((𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝐽 ∈ dom 𝐼 ∧ {𝐵, 𝐶} = (𝐼𝐽)) ∧ (𝐾 ∈ dom 𝐼 ∧ {𝐶, 𝐴} = (𝐼𝐾)))) → 𝐽𝐾)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  {cpr 4323  dom cdm 5266  ‘cfv 6049  Vtxcvtx 26073  iEdgciedg 26074  Edgcedg 26138 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-iota 6012  df-fv 6057 This theorem is referenced by:  uhgr3cyclex  27334
 Copyright terms: Public domain W3C validator