MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr2edg Structured version   Visualization version   GIF version

Theorem uhgr2edg 26081
Description: If a vertex is adjacent to two different vertices in a hypergraph, there are more than one edges starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 11-Feb-2021.)
Hypotheses
Ref Expression
usgrf1oedg.i 𝐼 = (iEdg‘𝐺)
usgrf1oedg.e 𝐸 = (Edg‘𝐺)
uhgr2edg.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uhgr2edg (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ (𝐴𝑉𝐵𝑉𝑁𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼(𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐺   𝑥,𝐼,𝑦   𝑥,𝑁,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem uhgr2edg
StepHypRef Expression
1 simp1l 1083 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ (𝐴𝑉𝐵𝑉𝑁𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐺 ∈ UHGraph )
2 simp1r 1084 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ (𝐴𝑉𝐵𝑉𝑁𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐴𝐵)
3 simp23 1094 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ (𝐴𝑉𝐵𝑉𝑁𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝑁𝑉)
4 simp21 1092 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ (𝐴𝑉𝐵𝑉𝑁𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → 𝐴𝑉)
5 3simpc 1058 . . . . 5 ((𝐴𝑉𝐵𝑉𝑁𝑉) → (𝐵𝑉𝑁𝑉))
653ad2ant2 1081 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ (𝐴𝑉𝐵𝑉𝑁𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → (𝐵𝑉𝑁𝑉))
73, 4, 6jca31 556 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ (𝐴𝑉𝐵𝑉𝑁𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉)))
81, 2, 7jca31 556 . 2 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ (𝐴𝑉𝐵𝑉𝑁𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))))
9 simp3 1061 . 2 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ (𝐴𝑉𝐵𝑉𝑁𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸))
10 usgrf1oedg.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
1110a1i 11 . . . . . . . 8 (𝐺 ∈ UHGraph → 𝐸 = (Edg‘𝐺))
12 edgval 25922 . . . . . . . . 9 (Edg‘𝐺) = ran (iEdg‘𝐺)
1312a1i 11 . . . . . . . 8 (𝐺 ∈ UHGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
14 usgrf1oedg.i . . . . . . . . . . 11 𝐼 = (iEdg‘𝐺)
1514eqcomi 2629 . . . . . . . . . 10 (iEdg‘𝐺) = 𝐼
1615a1i 11 . . . . . . . . 9 (𝐺 ∈ UHGraph → (iEdg‘𝐺) = 𝐼)
1716rneqd 5342 . . . . . . . 8 (𝐺 ∈ UHGraph → ran (iEdg‘𝐺) = ran 𝐼)
1811, 13, 173eqtrd 2658 . . . . . . 7 (𝐺 ∈ UHGraph → 𝐸 = ran 𝐼)
1918eleq2d 2685 . . . . . 6 (𝐺 ∈ UHGraph → ({𝑁, 𝐴} ∈ 𝐸 ↔ {𝑁, 𝐴} ∈ ran 𝐼))
2018eleq2d 2685 . . . . . 6 (𝐺 ∈ UHGraph → ({𝐵, 𝑁} ∈ 𝐸 ↔ {𝐵, 𝑁} ∈ ran 𝐼))
2119, 20anbi12d 746 . . . . 5 (𝐺 ∈ UHGraph → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) ↔ ({𝑁, 𝐴} ∈ ran 𝐼 ∧ {𝐵, 𝑁} ∈ ran 𝐼)))
2214uhgrfun 25942 . . . . . . 7 (𝐺 ∈ UHGraph → Fun 𝐼)
23 funfn 5906 . . . . . . 7 (Fun 𝐼𝐼 Fn dom 𝐼)
2422, 23sylib 208 . . . . . 6 (𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼)
25 fvelrnb 6230 . . . . . . 7 (𝐼 Fn dom 𝐼 → ({𝑁, 𝐴} ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼(𝐼𝑥) = {𝑁, 𝐴}))
26 fvelrnb 6230 . . . . . . 7 (𝐼 Fn dom 𝐼 → ({𝐵, 𝑁} ∈ ran 𝐼 ↔ ∃𝑦 ∈ dom 𝐼(𝐼𝑦) = {𝐵, 𝑁}))
2725, 26anbi12d 746 . . . . . 6 (𝐼 Fn dom 𝐼 → (({𝑁, 𝐴} ∈ ran 𝐼 ∧ {𝐵, 𝑁} ∈ ran 𝐼) ↔ (∃𝑥 ∈ dom 𝐼(𝐼𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼𝑦) = {𝐵, 𝑁})))
2824, 27syl 17 . . . . 5 (𝐺 ∈ UHGraph → (({𝑁, 𝐴} ∈ ran 𝐼 ∧ {𝐵, 𝑁} ∈ ran 𝐼) ↔ (∃𝑥 ∈ dom 𝐼(𝐼𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼𝑦) = {𝐵, 𝑁})))
2921, 28bitrd 268 . . . 4 (𝐺 ∈ UHGraph → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) ↔ (∃𝑥 ∈ dom 𝐼(𝐼𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼𝑦) = {𝐵, 𝑁})))
3029ad2antrr 761 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) ↔ (∃𝑥 ∈ dom 𝐼(𝐼𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼𝑦) = {𝐵, 𝑁})))
31 reeanv 3102 . . . 4 (∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) ↔ (∃𝑥 ∈ dom 𝐼(𝐼𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼𝑦) = {𝐵, 𝑁}))
32 fveq2 6178 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐼𝑥) = (𝐼𝑦))
3332eqeq1d 2622 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝐼𝑥) = {𝑁, 𝐴} ↔ (𝐼𝑦) = {𝑁, 𝐴}))
3433anbi1d 740 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) ↔ ((𝐼𝑦) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁})))
35 eqtr2 2640 . . . . . . . . . . . . 13 (((𝐼𝑦) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) → {𝑁, 𝐴} = {𝐵, 𝑁})
36 prcom 4258 . . . . . . . . . . . . . . 15 {𝐵, 𝑁} = {𝑁, 𝐵}
3736eqeq2i 2632 . . . . . . . . . . . . . 14 ({𝑁, 𝐴} = {𝐵, 𝑁} ↔ {𝑁, 𝐴} = {𝑁, 𝐵})
38 preq12bg 4377 . . . . . . . . . . . . . . . . . 18 (((𝑁𝑉𝐴𝑉) ∧ (𝑁𝑉𝐵𝑉)) → ({𝑁, 𝐴} = {𝑁, 𝐵} ↔ ((𝑁 = 𝑁𝐴 = 𝐵) ∨ (𝑁 = 𝐵𝐴 = 𝑁))))
3938ancom2s 843 . . . . . . . . . . . . . . . . 17 (((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉)) → ({𝑁, 𝐴} = {𝑁, 𝐵} ↔ ((𝑁 = 𝑁𝐴 = 𝐵) ∨ (𝑁 = 𝐵𝐴 = 𝑁))))
40 eqneqall 2802 . . . . . . . . . . . . . . . . . . . 20 (𝐴 = 𝐵 → (𝐴𝐵𝑥𝑦))
4140adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑁 = 𝑁𝐴 = 𝐵) → (𝐴𝐵𝑥𝑦))
42 eqtr 2639 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 = 𝑁𝑁 = 𝐵) → 𝐴 = 𝐵)
4342ancoms 469 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 = 𝐵𝐴 = 𝑁) → 𝐴 = 𝐵)
4443, 40syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑁 = 𝐵𝐴 = 𝑁) → (𝐴𝐵𝑥𝑦))
4541, 44jaoi 394 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 𝑁𝐴 = 𝐵) ∨ (𝑁 = 𝐵𝐴 = 𝑁)) → (𝐴𝐵𝑥𝑦))
4645adantld 483 . . . . . . . . . . . . . . . . 17 (((𝑁 = 𝑁𝐴 = 𝐵) ∨ (𝑁 = 𝐵𝐴 = 𝑁)) → ((𝐺 ∈ UHGraph ∧ 𝐴𝐵) → 𝑥𝑦))
4739, 46syl6bi 243 . . . . . . . . . . . . . . . 16 (((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉)) → ({𝑁, 𝐴} = {𝑁, 𝐵} → ((𝐺 ∈ UHGraph ∧ 𝐴𝐵) → 𝑥𝑦)))
4847com3l 89 . . . . . . . . . . . . . . 15 ({𝑁, 𝐴} = {𝑁, 𝐵} → ((𝐺 ∈ UHGraph ∧ 𝐴𝐵) → (((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉)) → 𝑥𝑦)))
4948impd 447 . . . . . . . . . . . . . 14 ({𝑁, 𝐴} = {𝑁, 𝐵} → (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → 𝑥𝑦))
5037, 49sylbi 207 . . . . . . . . . . . . 13 ({𝑁, 𝐴} = {𝐵, 𝑁} → (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → 𝑥𝑦))
5135, 50syl 17 . . . . . . . . . . . 12 (((𝐼𝑦) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) → (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → 𝑥𝑦))
5234, 51syl6bi 243 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) → (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → 𝑥𝑦)))
5352com23 86 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → (((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) → 𝑥𝑦)))
5453impd 447 . . . . . . . . 9 (𝑥 = 𝑦 → ((((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) ∧ ((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁})) → 𝑥𝑦))
55 ax-1 6 . . . . . . . . 9 (𝑥𝑦 → ((((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) ∧ ((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁})) → 𝑥𝑦))
5654, 55pm2.61ine 2874 . . . . . . . 8 ((((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) ∧ ((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁})) → 𝑥𝑦)
57 prid1g 4286 . . . . . . . . . . . . 13 (𝑁𝑉𝑁 ∈ {𝑁, 𝐴})
5857ad2antrr 761 . . . . . . . . . . . 12 (((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉)) → 𝑁 ∈ {𝑁, 𝐴})
5958adantl 482 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → 𝑁 ∈ {𝑁, 𝐴})
60 eleq2 2688 . . . . . . . . . . 11 ((𝐼𝑥) = {𝑁, 𝐴} → (𝑁 ∈ (𝐼𝑥) ↔ 𝑁 ∈ {𝑁, 𝐴}))
6159, 60syl5ibr 236 . . . . . . . . . 10 ((𝐼𝑥) = {𝑁, 𝐴} → (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → 𝑁 ∈ (𝐼𝑥)))
6261adantr 481 . . . . . . . . 9 (((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) → (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → 𝑁 ∈ (𝐼𝑥)))
6362impcom 446 . . . . . . . 8 ((((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) ∧ ((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁})) → 𝑁 ∈ (𝐼𝑥))
64 prid2g 4287 . . . . . . . . . . . . 13 (𝑁𝑉𝑁 ∈ {𝐵, 𝑁})
6564ad2antrr 761 . . . . . . . . . . . 12 (((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉)) → 𝑁 ∈ {𝐵, 𝑁})
6665adantl 482 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → 𝑁 ∈ {𝐵, 𝑁})
67 eleq2 2688 . . . . . . . . . . 11 ((𝐼𝑦) = {𝐵, 𝑁} → (𝑁 ∈ (𝐼𝑦) ↔ 𝑁 ∈ {𝐵, 𝑁}))
6866, 67syl5ibr 236 . . . . . . . . . 10 ((𝐼𝑦) = {𝐵, 𝑁} → (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → 𝑁 ∈ (𝐼𝑦)))
6968adantl 482 . . . . . . . . 9 (((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) → (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → 𝑁 ∈ (𝐼𝑦)))
7069impcom 446 . . . . . . . 8 ((((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) ∧ ((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁})) → 𝑁 ∈ (𝐼𝑦))
7156, 63, 703jca 1240 . . . . . . 7 ((((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) ∧ ((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁})) → (𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)))
7271ex 450 . . . . . 6 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → (((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) → (𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦))))
7372reximdv 3013 . . . . 5 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → (∃𝑦 ∈ dom 𝐼((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) → ∃𝑦 ∈ dom 𝐼(𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦))))
7473reximdv 3013 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → (∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝐼𝑥) = {𝑁, 𝐴} ∧ (𝐼𝑦) = {𝐵, 𝑁}) → ∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼(𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦))))
7531, 74syl5bir 233 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → ((∃𝑥 ∈ dom 𝐼(𝐼𝑥) = {𝑁, 𝐴} ∧ ∃𝑦 ∈ dom 𝐼(𝐼𝑦) = {𝐵, 𝑁}) → ∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼(𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦))))
7630, 75sylbid 230 . 2 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ ((𝑁𝑉𝐴𝑉) ∧ (𝐵𝑉𝑁𝑉))) → (({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸) → ∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼(𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦))))
778, 9, 76sylc 65 1 (((𝐺 ∈ UHGraph ∧ 𝐴𝐵) ∧ (𝐴𝑉𝐵𝑉𝑁𝑉) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼(𝑥𝑦𝑁 ∈ (𝐼𝑥) ∧ 𝑁 ∈ (𝐼𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791  wrex 2910  {cpr 4170  dom cdm 5104  ran crn 5105  Fun wfun 5870   Fn wfn 5871  cfv 5876  Vtxcvtx 25855  iEdgciedg 25856  Edgcedg 25920   UHGraph cuhgr 25932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-fv 5884  df-edg 25921  df-uhgr 25934
This theorem is referenced by:  umgr2edg  26082
  Copyright terms: Public domain W3C validator