![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgr0v0e | Structured version Visualization version GIF version |
Description: The null graph, with no vertices, has no edges. (Contributed by AV, 21-Oct-2020.) |
Ref | Expression |
---|---|
uhgr0v0e.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgr0v0e.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
uhgr0v0e | ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → 𝐸 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgr0v0e.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | eqeq1i 2656 | . . . . 5 ⊢ (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅) |
3 | uhgr0vb 26012 | . . . . . . 7 ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) | |
4 | 3 | biimpd 219 | . . . . . 6 ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅)) |
5 | 4 | ex 449 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → ((Vtx‘𝐺) = ∅ → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅))) |
6 | 2, 5 | syl5bi 232 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝑉 = ∅ → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅))) |
7 | 6 | pm2.43a 54 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝑉 = ∅ → (iEdg‘𝐺) = ∅)) |
8 | 7 | imp 444 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → (iEdg‘𝐺) = ∅) |
9 | uhgr0v0e.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
10 | 9 | eqeq1i 2656 | . . . 4 ⊢ (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅) |
11 | uhgriedg0edg0 26067 | . . . 4 ⊢ (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) | |
12 | 10, 11 | syl5bb 272 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅)) |
13 | 12 | adantr 480 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅)) |
14 | 8, 13 | mpbird 247 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → 𝐸 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∅c0 3948 ‘cfv 5926 Vtxcvtx 25919 iEdgciedg 25920 Edgcedg 25984 UHGraphcuhgr 25996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-edg 25985 df-uhgr 25998 |
This theorem is referenced by: uhgr0vsize0 26176 uhgr0vusgr 26179 fusgrfisbase 26265 |
Copyright terms: Public domain | W3C validator |