![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgr0 | Structured version Visualization version GIF version |
Description: The null graph represented by an empty set is a hypergraph. (Contributed by AV, 9-Oct-2020.) |
Ref | Expression |
---|---|
uhgr0 | ⊢ ∅ ∈ UHGraph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0 6248 | . . 3 ⊢ ∅:∅⟶∅ | |
2 | dm0 5495 | . . . 4 ⊢ dom ∅ = ∅ | |
3 | pw0 4489 | . . . . . 6 ⊢ 𝒫 ∅ = {∅} | |
4 | 3 | difeq1i 3868 | . . . . 5 ⊢ (𝒫 ∅ ∖ {∅}) = ({∅} ∖ {∅}) |
5 | difid 4092 | . . . . 5 ⊢ ({∅} ∖ {∅}) = ∅ | |
6 | 4, 5 | eqtri 2783 | . . . 4 ⊢ (𝒫 ∅ ∖ {∅}) = ∅ |
7 | 2, 6 | feq23i 6201 | . . 3 ⊢ (∅:dom ∅⟶(𝒫 ∅ ∖ {∅}) ↔ ∅:∅⟶∅) |
8 | 1, 7 | mpbir 221 | . 2 ⊢ ∅:dom ∅⟶(𝒫 ∅ ∖ {∅}) |
9 | 0ex 4943 | . . 3 ⊢ ∅ ∈ V | |
10 | vtxval0 26152 | . . . . 5 ⊢ (Vtx‘∅) = ∅ | |
11 | 10 | eqcomi 2770 | . . . 4 ⊢ ∅ = (Vtx‘∅) |
12 | iedgval0 26153 | . . . . 5 ⊢ (iEdg‘∅) = ∅ | |
13 | 12 | eqcomi 2770 | . . . 4 ⊢ ∅ = (iEdg‘∅) |
14 | 11, 13 | isuhgr 26176 | . . 3 ⊢ (∅ ∈ V → (∅ ∈ UHGraph ↔ ∅:dom ∅⟶(𝒫 ∅ ∖ {∅}))) |
15 | 9, 14 | ax-mp 5 | . 2 ⊢ (∅ ∈ UHGraph ↔ ∅:dom ∅⟶(𝒫 ∅ ∖ {∅})) |
16 | 8, 15 | mpbir 221 | 1 ⊢ ∅ ∈ UHGraph |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 2140 Vcvv 3341 ∖ cdif 3713 ∅c0 4059 𝒫 cpw 4303 {csn 4322 dom cdm 5267 ⟶wf 6046 ‘cfv 6050 Vtxcvtx 26095 iEdgciedg 26096 UHGraphcuhgr 26172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-fv 6058 df-slot 16084 df-base 16086 df-edgf 26089 df-vtx 26097 df-iedg 26098 df-uhgr 26174 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |