Proof of Theorem ufprim
Step | Hyp | Ref
| Expression |
1 | | ufilfil 21755 |
. . . . . . 7
⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) |
2 | 1 | 3ad2ant1 1102 |
. . . . . 6
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → 𝐹 ∈ (Fil‘𝑋)) |
3 | 2 | adantr 480 |
. . . . 5
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
4 | | simpr 476 |
. . . . 5
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ∈ 𝐹) |
5 | | unss 3820 |
. . . . . . . 8
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ↔ (𝐴 ∪ 𝐵) ⊆ 𝑋) |
6 | 5 | biimpi 206 |
. . . . . . 7
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (𝐴 ∪ 𝐵) ⊆ 𝑋) |
7 | 6 | 3adant1 1099 |
. . . . . 6
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (𝐴 ∪ 𝐵) ⊆ 𝑋) |
8 | 7 | adantr 480 |
. . . . 5
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐴 ∪ 𝐵) ⊆ 𝑋) |
9 | | ssun1 3809 |
. . . . . 6
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
10 | 9 | a1i 11 |
. . . . 5
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ (𝐴 ∪ 𝐵)) |
11 | | filss 21704 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∈ 𝐹 ∧ (𝐴 ∪ 𝐵) ⊆ 𝑋 ∧ 𝐴 ⊆ (𝐴 ∪ 𝐵))) → (𝐴 ∪ 𝐵) ∈ 𝐹) |
12 | 3, 4, 8, 10, 11 | syl13anc 1368 |
. . . 4
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝐴 ∈ 𝐹) → (𝐴 ∪ 𝐵) ∈ 𝐹) |
13 | 12 | ex 449 |
. . 3
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (𝐴 ∈ 𝐹 → (𝐴 ∪ 𝐵) ∈ 𝐹)) |
14 | 2 | adantr 480 |
. . . . 5
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝐵 ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
15 | | simpr 476 |
. . . . 5
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝐵 ∈ 𝐹) → 𝐵 ∈ 𝐹) |
16 | 7 | adantr 480 |
. . . . 5
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝐵 ∈ 𝐹) → (𝐴 ∪ 𝐵) ⊆ 𝑋) |
17 | | ssun2 3810 |
. . . . . 6
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) |
18 | 17 | a1i 11 |
. . . . 5
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝐵 ∈ 𝐹) → 𝐵 ⊆ (𝐴 ∪ 𝐵)) |
19 | | filss 21704 |
. . . . 5
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐵 ∈ 𝐹 ∧ (𝐴 ∪ 𝐵) ⊆ 𝑋 ∧ 𝐵 ⊆ (𝐴 ∪ 𝐵))) → (𝐴 ∪ 𝐵) ∈ 𝐹) |
20 | 14, 15, 16, 18, 19 | syl13anc 1368 |
. . . 4
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ 𝐵 ∈ 𝐹) → (𝐴 ∪ 𝐵) ∈ 𝐹) |
21 | 20 | ex 449 |
. . 3
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (𝐵 ∈ 𝐹 → (𝐴 ∪ 𝐵) ∈ 𝐹)) |
22 | 13, 21 | jaod 394 |
. 2
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((𝐴 ∈ 𝐹 ∨ 𝐵 ∈ 𝐹) → (𝐴 ∪ 𝐵) ∈ 𝐹)) |
23 | | ufilb 21757 |
. . . . . . 7
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (¬ 𝐴 ∈ 𝐹 ↔ (𝑋 ∖ 𝐴) ∈ 𝐹)) |
24 | 23 | 3adant3 1101 |
. . . . . 6
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → (¬ 𝐴 ∈ 𝐹 ↔ (𝑋 ∖ 𝐴) ∈ 𝐹)) |
25 | 24 | adantr 480 |
. . . . 5
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹) → (¬ 𝐴 ∈ 𝐹 ↔ (𝑋 ∖ 𝐴) ∈ 𝐹)) |
26 | 2 | 3ad2ant1 1102 |
. . . . . . 7
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹 ∧ (𝑋 ∖ 𝐴) ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
27 | | difun2 4081 |
. . . . . . . . . . 11
⊢ ((𝐵 ∪ 𝐴) ∖ 𝐴) = (𝐵 ∖ 𝐴) |
28 | | uncom 3790 |
. . . . . . . . . . . 12
⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) |
29 | 28 | difeq1i 3757 |
. . . . . . . . . . 11
⊢ ((𝐵 ∪ 𝐴) ∖ 𝐴) = ((𝐴 ∪ 𝐵) ∖ 𝐴) |
30 | 27, 29 | eqtr3i 2675 |
. . . . . . . . . 10
⊢ (𝐵 ∖ 𝐴) = ((𝐴 ∪ 𝐵) ∖ 𝐴) |
31 | 30 | ineq2i 3844 |
. . . . . . . . 9
⊢ (𝑋 ∩ (𝐵 ∖ 𝐴)) = (𝑋 ∩ ((𝐴 ∪ 𝐵) ∖ 𝐴)) |
32 | | indifcom 3905 |
. . . . . . . . 9
⊢ (𝐵 ∩ (𝑋 ∖ 𝐴)) = (𝑋 ∩ (𝐵 ∖ 𝐴)) |
33 | | indifcom 3905 |
. . . . . . . . 9
⊢ ((𝐴 ∪ 𝐵) ∩ (𝑋 ∖ 𝐴)) = (𝑋 ∩ ((𝐴 ∪ 𝐵) ∖ 𝐴)) |
34 | 31, 32, 33 | 3eqtr4i 2683 |
. . . . . . . 8
⊢ (𝐵 ∩ (𝑋 ∖ 𝐴)) = ((𝐴 ∪ 𝐵) ∩ (𝑋 ∖ 𝐴)) |
35 | | filin 21705 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹 ∧ (𝑋 ∖ 𝐴) ∈ 𝐹) → ((𝐴 ∪ 𝐵) ∩ (𝑋 ∖ 𝐴)) ∈ 𝐹) |
36 | 2, 35 | syl3an1 1399 |
. . . . . . . 8
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹 ∧ (𝑋 ∖ 𝐴) ∈ 𝐹) → ((𝐴 ∪ 𝐵) ∩ (𝑋 ∖ 𝐴)) ∈ 𝐹) |
37 | 34, 36 | syl5eqel 2734 |
. . . . . . 7
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹 ∧ (𝑋 ∖ 𝐴) ∈ 𝐹) → (𝐵 ∩ (𝑋 ∖ 𝐴)) ∈ 𝐹) |
38 | | simp13 1113 |
. . . . . . 7
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹 ∧ (𝑋 ∖ 𝐴) ∈ 𝐹) → 𝐵 ⊆ 𝑋) |
39 | | inss1 3866 |
. . . . . . . 8
⊢ (𝐵 ∩ (𝑋 ∖ 𝐴)) ⊆ 𝐵 |
40 | 39 | a1i 11 |
. . . . . . 7
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹 ∧ (𝑋 ∖ 𝐴) ∈ 𝐹) → (𝐵 ∩ (𝑋 ∖ 𝐴)) ⊆ 𝐵) |
41 | | filss 21704 |
. . . . . . 7
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ ((𝐵 ∩ (𝑋 ∖ 𝐴)) ∈ 𝐹 ∧ 𝐵 ⊆ 𝑋 ∧ (𝐵 ∩ (𝑋 ∖ 𝐴)) ⊆ 𝐵)) → 𝐵 ∈ 𝐹) |
42 | 26, 37, 38, 40, 41 | syl13anc 1368 |
. . . . . 6
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹 ∧ (𝑋 ∖ 𝐴) ∈ 𝐹) → 𝐵 ∈ 𝐹) |
43 | 42 | 3expia 1286 |
. . . . 5
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹) → ((𝑋 ∖ 𝐴) ∈ 𝐹 → 𝐵 ∈ 𝐹)) |
44 | 25, 43 | sylbid 230 |
. . . 4
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹) → (¬ 𝐴 ∈ 𝐹 → 𝐵 ∈ 𝐹)) |
45 | 44 | orrd 392 |
. . 3
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) ∧ (𝐴 ∪ 𝐵) ∈ 𝐹) → (𝐴 ∈ 𝐹 ∨ 𝐵 ∈ 𝐹)) |
46 | 45 | ex 449 |
. 2
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((𝐴 ∪ 𝐵) ∈ 𝐹 → (𝐴 ∈ 𝐹 ∨ 𝐵 ∈ 𝐹))) |
47 | 22, 46 | impbid 202 |
1
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((𝐴 ∈ 𝐹 ∨ 𝐵 ∈ 𝐹) ↔ (𝐴 ∪ 𝐵) ∈ 𝐹)) |