MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilmax Structured version   Visualization version   GIF version

Theorem ufilmax 21912
Description: Any filter finer than an ultrafilter is actually equal to it. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.)
Assertion
Ref Expression
ufilmax ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → 𝐹 = 𝐺)

Proof of Theorem ufilmax
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1133 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → 𝐹𝐺)
2 filelss 21857 . . . . . 6 ((𝐺 ∈ (Fil‘𝑋) ∧ 𝑥𝐺) → 𝑥𝑋)
32ex 449 . . . . 5 (𝐺 ∈ (Fil‘𝑋) → (𝑥𝐺𝑥𝑋))
433ad2ant2 1129 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥𝐺𝑥𝑋))
5 ufilb 21911 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 ↔ (𝑋𝑥) ∈ 𝐹))
653ad2antl1 1201 . . . . . . . 8 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 ↔ (𝑋𝑥) ∈ 𝐹))
7 simpl3 1232 . . . . . . . . . 10 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → 𝐹𝐺)
87sseld 3743 . . . . . . . . 9 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐹 → (𝑋𝑥) ∈ 𝐺))
9 filfbas 21853 . . . . . . . . . . . . 13 (𝐺 ∈ (Fil‘𝑋) → 𝐺 ∈ (fBas‘𝑋))
10 fbncp 21844 . . . . . . . . . . . . . 14 ((𝐺 ∈ (fBas‘𝑋) ∧ 𝑥𝐺) → ¬ (𝑋𝑥) ∈ 𝐺)
1110ex 449 . . . . . . . . . . . . 13 (𝐺 ∈ (fBas‘𝑋) → (𝑥𝐺 → ¬ (𝑋𝑥) ∈ 𝐺))
129, 11syl 17 . . . . . . . . . . . 12 (𝐺 ∈ (Fil‘𝑋) → (𝑥𝐺 → ¬ (𝑋𝑥) ∈ 𝐺))
1312con2d 129 . . . . . . . . . . 11 (𝐺 ∈ (Fil‘𝑋) → ((𝑋𝑥) ∈ 𝐺 → ¬ 𝑥𝐺))
14133ad2ant2 1129 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → ((𝑋𝑥) ∈ 𝐺 → ¬ 𝑥𝐺))
1514adantr 472 . . . . . . . . 9 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐺 → ¬ 𝑥𝐺))
168, 15syld 47 . . . . . . . 8 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐹 → ¬ 𝑥𝐺))
176, 16sylbid 230 . . . . . . 7 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 → ¬ 𝑥𝐺))
1817con4d 114 . . . . . 6 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → (𝑥𝐺𝑥𝐹))
1918ex 449 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥𝑋 → (𝑥𝐺𝑥𝐹)))
2019com23 86 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥𝐺 → (𝑥𝑋𝑥𝐹)))
214, 20mpdd 43 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥𝐺𝑥𝐹))
2221ssrdv 3750 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → 𝐺𝐹)
231, 22eqssd 3761 1 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  cdif 3712  wss 3715  cfv 6049  fBascfbas 19936  Filcfil 21850  UFilcufil 21904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fv 6057  df-fbas 19945  df-fil 21851  df-ufil 21906
This theorem is referenced by:  isufil2  21913  ufileu  21924  uffixfr  21928  fmufil  21964  uffclsflim  22036
  Copyright terms: Public domain W3C validator