MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilen Structured version   Visualization version   GIF version

Theorem ufilen 21954
Description: Any infinite set has an ultrafilter on it whose elements are of the same cardinality as the set. Any such ultrafilter is necessarily free. (Contributed by Jeff Hankins, 7-Dec-2009.) (Revised by Stefan O'Rear, 3-Aug-2015.)
Assertion
Ref Expression
ufilen (ω ≼ 𝑋 → ∃𝑓 ∈ (UFil‘𝑋)∀𝑥𝑓 𝑥𝑋)
Distinct variable group:   𝑥,𝑓,𝑋

Proof of Theorem ufilen
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reldom 8115 . . . . . 6 Rel ≼
21brrelex2i 5299 . . . . 5 (ω ≼ 𝑋𝑋 ∈ V)
3 numth3 9494 . . . . 5 (𝑋 ∈ V → 𝑋 ∈ dom card)
42, 3syl 17 . . . 4 (ω ≼ 𝑋𝑋 ∈ dom card)
5 csdfil 21918 . . . 4 ((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ∈ (Fil‘𝑋))
64, 5mpancom 668 . . 3 (ω ≼ 𝑋 → {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ∈ (Fil‘𝑋))
7 filssufil 21936 . . 3 ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋){𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓)
86, 7syl 17 . 2 (ω ≼ 𝑋 → ∃𝑓 ∈ (UFil‘𝑋){𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓)
9 elfvex 6362 . . . . . . 7 (𝑓 ∈ (UFil‘𝑋) → 𝑋 ∈ V)
109ad2antlr 706 . . . . . 6 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → 𝑋 ∈ V)
11 ufilfil 21928 . . . . . . . 8 (𝑓 ∈ (UFil‘𝑋) → 𝑓 ∈ (Fil‘𝑋))
12 filelss 21876 . . . . . . . 8 ((𝑓 ∈ (Fil‘𝑋) ∧ 𝑥𝑓) → 𝑥𝑋)
1311, 12sylan 569 . . . . . . 7 ((𝑓 ∈ (UFil‘𝑋) ∧ 𝑥𝑓) → 𝑥𝑋)
1413adantll 693 . . . . . 6 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → 𝑥𝑋)
15 ssdomg 8155 . . . . . 6 (𝑋 ∈ V → (𝑥𝑋𝑥𝑋))
1610, 14, 15sylc 65 . . . . 5 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → 𝑥𝑋)
17 filfbas 21872 . . . . . . . . 9 (𝑓 ∈ (Fil‘𝑋) → 𝑓 ∈ (fBas‘𝑋))
1811, 17syl 17 . . . . . . . 8 (𝑓 ∈ (UFil‘𝑋) → 𝑓 ∈ (fBas‘𝑋))
1918adantl 467 . . . . . . 7 ((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) → 𝑓 ∈ (fBas‘𝑋))
20 fbncp 21863 . . . . . . 7 ((𝑓 ∈ (fBas‘𝑋) ∧ 𝑥𝑓) → ¬ (𝑋𝑥) ∈ 𝑓)
2119, 20sylan 569 . . . . . 6 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → ¬ (𝑋𝑥) ∈ 𝑓)
22 difss 3888 . . . . . . . . . . . . . 14 (𝑋𝑥) ⊆ 𝑋
23 elpw2g 4958 . . . . . . . . . . . . . 14 (𝑋 ∈ V → ((𝑋𝑥) ∈ 𝒫 𝑋 ↔ (𝑋𝑥) ⊆ 𝑋))
2422, 23mpbiri 248 . . . . . . . . . . . . 13 (𝑋 ∈ V → (𝑋𝑥) ∈ 𝒫 𝑋)
25243ad2ant1 1127 . . . . . . . . . . . 12 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → (𝑋𝑥) ∈ 𝒫 𝑋)
26 simp2 1131 . . . . . . . . . . . . . 14 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → 𝑥𝑋)
27 dfss4 4007 . . . . . . . . . . . . . 14 (𝑥𝑋 ↔ (𝑋 ∖ (𝑋𝑥)) = 𝑥)
2826, 27sylib 208 . . . . . . . . . . . . 13 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → (𝑋 ∖ (𝑋𝑥)) = 𝑥)
29 simp3 1132 . . . . . . . . . . . . 13 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → 𝑥𝑋)
3028, 29eqbrtrd 4808 . . . . . . . . . . . 12 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → (𝑋 ∖ (𝑋𝑥)) ≺ 𝑋)
31 difeq2 3873 . . . . . . . . . . . . . 14 (𝑦 = (𝑋𝑥) → (𝑋𝑦) = (𝑋 ∖ (𝑋𝑥)))
3231breq1d 4796 . . . . . . . . . . . . 13 (𝑦 = (𝑋𝑥) → ((𝑋𝑦) ≺ 𝑋 ↔ (𝑋 ∖ (𝑋𝑥)) ≺ 𝑋))
3332elrab 3515 . . . . . . . . . . . 12 ((𝑋𝑥) ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ↔ ((𝑋𝑥) ∈ 𝒫 𝑋 ∧ (𝑋 ∖ (𝑋𝑥)) ≺ 𝑋))
3425, 30, 33sylanbrc 572 . . . . . . . . . . 11 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → (𝑋𝑥) ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋})
35 ssel 3746 . . . . . . . . . . 11 ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ((𝑋𝑥) ∈ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} → (𝑋𝑥) ∈ 𝑓))
3634, 35syl5com 31 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝑥𝑋𝑥𝑋) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → (𝑋𝑥) ∈ 𝑓))
37363expa 1111 . . . . . . . . 9 (((𝑋 ∈ V ∧ 𝑥𝑋) ∧ 𝑥𝑋) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → (𝑋𝑥) ∈ 𝑓))
3837impancom 439 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝑥𝑋) ∧ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓) → (𝑥𝑋 → (𝑋𝑥) ∈ 𝑓))
3938con3d 149 . . . . . . 7 (((𝑋 ∈ V ∧ 𝑥𝑋) ∧ {𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓) → (¬ (𝑋𝑥) ∈ 𝑓 → ¬ 𝑥𝑋))
4039impancom 439 . . . . . 6 (((𝑋 ∈ V ∧ 𝑥𝑋) ∧ ¬ (𝑋𝑥) ∈ 𝑓) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ¬ 𝑥𝑋))
4110, 14, 21, 40syl21anc 1475 . . . . 5 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ¬ 𝑥𝑋))
42 bren2 8140 . . . . . 6 (𝑥𝑋 ↔ (𝑥𝑋 ∧ ¬ 𝑥𝑋))
4342simplbi2 488 . . . . 5 (𝑥𝑋 → (¬ 𝑥𝑋𝑥𝑋))
4416, 41, 43sylsyld 61 . . . 4 (((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) ∧ 𝑥𝑓) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓𝑥𝑋))
4544ralrimdva 3118 . . 3 ((ω ≼ 𝑋𝑓 ∈ (UFil‘𝑋)) → ({𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ∀𝑥𝑓 𝑥𝑋))
4645reximdva 3165 . 2 (ω ≼ 𝑋 → (∃𝑓 ∈ (UFil‘𝑋){𝑦 ∈ 𝒫 𝑋 ∣ (𝑋𝑦) ≺ 𝑋} ⊆ 𝑓 → ∃𝑓 ∈ (UFil‘𝑋)∀𝑥𝑓 𝑥𝑋))
478, 46mpd 15 1 (ω ≼ 𝑋 → ∃𝑓 ∈ (UFil‘𝑋)∀𝑥𝑓 𝑥𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  wrex 3062  {crab 3065  Vcvv 3351  cdif 3720  wss 3723  𝒫 cpw 4297   class class class wbr 4786  dom cdm 5249  cfv 6031  ωcom 7212  cen 8106  cdom 8107  csdm 8108  cardccrd 8961  fBascfbas 19949  Filcfil 21869  UFilcufil 21923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-ac2 9487
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-rpss 7084  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fi 8473  df-oi 8571  df-card 8965  df-ac 9139  df-cda 9192  df-fbas 19958  df-fg 19959  df-fil 21870  df-ufil 21925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator