![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ufildom1 | Structured version Visualization version GIF version |
Description: An ultrafilter is generated by at most one element (because free ultrafilters have no generators and fixed ultrafilters have exactly one). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
ufildom1 | ⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹 ≼ 1𝑜) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4688 | . 2 ⊢ (∩ 𝐹 = ∅ → (∩ 𝐹 ≼ 1𝑜 ↔ ∅ ≼ 1𝑜)) | |
2 | uffixsn 21776 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ ∩ 𝐹) → {𝑥} ∈ 𝐹) | |
3 | intss1 4524 | . . . . . . . . 9 ⊢ ({𝑥} ∈ 𝐹 → ∩ 𝐹 ⊆ {𝑥}) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ ∩ 𝐹) → ∩ 𝐹 ⊆ {𝑥}) |
5 | simpr 476 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ ∩ 𝐹) → 𝑥 ∈ ∩ 𝐹) | |
6 | 5 | snssd 4372 | . . . . . . . 8 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ ∩ 𝐹) → {𝑥} ⊆ ∩ 𝐹) |
7 | 4, 6 | eqssd 3653 | . . . . . . 7 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ ∩ 𝐹) → ∩ 𝐹 = {𝑥}) |
8 | 7 | ex 449 | . . . . . 6 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ ∩ 𝐹 → ∩ 𝐹 = {𝑥})) |
9 | 8 | eximdv 1886 | . . . . 5 ⊢ (𝐹 ∈ (UFil‘𝑋) → (∃𝑥 𝑥 ∈ ∩ 𝐹 → ∃𝑥∩ 𝐹 = {𝑥})) |
10 | n0 3964 | . . . . 5 ⊢ (∩ 𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ∩ 𝐹) | |
11 | en1 8064 | . . . . 5 ⊢ (∩ 𝐹 ≈ 1𝑜 ↔ ∃𝑥∩ 𝐹 = {𝑥}) | |
12 | 9, 10, 11 | 3imtr4g 285 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) → (∩ 𝐹 ≠ ∅ → ∩ 𝐹 ≈ 1𝑜)) |
13 | 12 | imp 444 | . . 3 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ ∩ 𝐹 ≠ ∅) → ∩ 𝐹 ≈ 1𝑜) |
14 | endom 8024 | . . 3 ⊢ (∩ 𝐹 ≈ 1𝑜 → ∩ 𝐹 ≼ 1𝑜) | |
15 | 13, 14 | syl 17 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ ∩ 𝐹 ≠ ∅) → ∩ 𝐹 ≼ 1𝑜) |
16 | 1on 7612 | . . 3 ⊢ 1𝑜 ∈ On | |
17 | 0domg 8128 | . . 3 ⊢ (1𝑜 ∈ On → ∅ ≼ 1𝑜) | |
18 | 16, 17 | mp1i 13 | . 2 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∅ ≼ 1𝑜) |
19 | 1, 15, 18 | pm2.61ne 2908 | 1 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹 ≼ 1𝑜) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∃wex 1744 ∈ wcel 2030 ≠ wne 2823 ⊆ wss 3607 ∅c0 3948 {csn 4210 ∩ cint 4507 class class class wbr 4685 Oncon0 5761 ‘cfv 5926 1𝑜c1o 7598 ≈ cen 7994 ≼ cdom 7995 UFilcufil 21750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1o 7605 df-en 7998 df-dom 7999 df-fbas 19791 df-fg 19792 df-fil 21697 df-ufil 21752 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |