MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilb Structured version   Visualization version   GIF version

Theorem ufilb 21931
Description: The complement is in an ultrafilter iff the set is not. (Contributed by Mario Carneiro, 11-Dec-2013.) (Revised by Mario Carneiro, 29-Jul-2015.)
Assertion
Ref Expression
ufilb ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → (¬ 𝑆𝐹 ↔ (𝑋𝑆) ∈ 𝐹))

Proof of Theorem ufilb
StepHypRef Expression
1 ufilss 21930 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → (𝑆𝐹 ∨ (𝑋𝑆) ∈ 𝐹))
21ord 391 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → (¬ 𝑆𝐹 → (𝑋𝑆) ∈ 𝐹))
3 ufilfil 21929 . . . 4 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
4 filfbas 21873 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
5 fbncp 21864 . . . . . 6 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑆𝐹) → ¬ (𝑋𝑆) ∈ 𝐹)
65ex 449 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (𝑆𝐹 → ¬ (𝑋𝑆) ∈ 𝐹))
76con2d 129 . . . 4 (𝐹 ∈ (fBas‘𝑋) → ((𝑋𝑆) ∈ 𝐹 → ¬ 𝑆𝐹))
83, 4, 73syl 18 . . 3 (𝐹 ∈ (UFil‘𝑋) → ((𝑋𝑆) ∈ 𝐹 → ¬ 𝑆𝐹))
98adantr 472 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → ((𝑋𝑆) ∈ 𝐹 → ¬ 𝑆𝐹))
102, 9impbid 202 1 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → (¬ 𝑆𝐹 ↔ (𝑋𝑆) ∈ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  wcel 2139  cdif 3712  wss 3715  cfv 6049  fBascfbas 19956  Filcfil 21870  UFilcufil 21924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fv 6057  df-fbas 19965  df-fil 21871  df-ufil 21926
This theorem is referenced by:  ufilmax  21932  ufprim  21934  trufil  21935  ufileu  21944  cfinufil  21953  alexsublem  22069
  Copyright terms: Public domain W3C validator