![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ufilb | Structured version Visualization version GIF version |
Description: The complement is in an ultrafilter iff the set is not. (Contributed by Mario Carneiro, 11-Dec-2013.) (Revised by Mario Carneiro, 29-Jul-2015.) |
Ref | Expression |
---|---|
ufilb | ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (¬ 𝑆 ∈ 𝐹 ↔ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ufilss 21930 | . . 3 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐹 ∨ (𝑋 ∖ 𝑆) ∈ 𝐹)) | |
2 | 1 | ord 391 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (¬ 𝑆 ∈ 𝐹 → (𝑋 ∖ 𝑆) ∈ 𝐹)) |
3 | ufilfil 21929 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) | |
4 | filfbas 21873 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
5 | fbncp 21864 | . . . . . 6 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑆 ∈ 𝐹) → ¬ (𝑋 ∖ 𝑆) ∈ 𝐹) | |
6 | 5 | ex 449 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑆 ∈ 𝐹 → ¬ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
7 | 6 | con2d 129 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → ((𝑋 ∖ 𝑆) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹)) |
8 | 3, 4, 7 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → ((𝑋 ∖ 𝑆) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹)) |
9 | 8 | adantr 472 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝑋 ∖ 𝑆) ∈ 𝐹 → ¬ 𝑆 ∈ 𝐹)) |
10 | 2, 9 | impbid 202 | 1 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (¬ 𝑆 ∈ 𝐹 ↔ (𝑋 ∖ 𝑆) ∈ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2139 ∖ cdif 3712 ⊆ wss 3715 ‘cfv 6049 fBascfbas 19956 Filcfil 21870 UFilcufil 21924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fv 6057 df-fbas 19965 df-fil 21871 df-ufil 21926 |
This theorem is referenced by: ufilmax 21932 ufprim 21934 trufil 21935 ufileu 21944 cfinufil 21953 alexsublem 22069 |
Copyright terms: Public domain | W3C validator |