MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffix2 Structured version   Visualization version   GIF version

Theorem uffix2 21775
Description: A classification of fixed ultrafilters. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffix2 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 ≠ ∅ ↔ ∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑋,𝑦

Proof of Theorem uffix2
StepHypRef Expression
1 ufilfil 21755 . . . . . . . 8 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
2 filn0 21713 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
3 intssuni 4531 . . . . . . . 8 (𝐹 ≠ ∅ → 𝐹 𝐹)
41, 2, 33syl 18 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 𝐹)
5 filunibas 21732 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
61, 5syl 17 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 = 𝑋)
74, 6sseqtrd 3674 . . . . . 6 (𝐹 ∈ (UFil‘𝑋) → 𝐹𝑋)
87sseld 3635 . . . . 5 (𝐹 ∈ (UFil‘𝑋) → (𝑥 𝐹𝑥𝑋))
98pm4.71rd 668 . . . 4 (𝐹 ∈ (UFil‘𝑋) → (𝑥 𝐹 ↔ (𝑥𝑋𝑥 𝐹)))
10 uffixfr 21774 . . . . 5 (𝐹 ∈ (UFil‘𝑋) → (𝑥 𝐹𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
1110anbi2d 740 . . . 4 (𝐹 ∈ (UFil‘𝑋) → ((𝑥𝑋𝑥 𝐹) ↔ (𝑥𝑋𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦})))
129, 11bitrd 268 . . 3 (𝐹 ∈ (UFil‘𝑋) → (𝑥 𝐹 ↔ (𝑥𝑋𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦})))
1312exbidv 1890 . 2 (𝐹 ∈ (UFil‘𝑋) → (∃𝑥 𝑥 𝐹 ↔ ∃𝑥(𝑥𝑋𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦})))
14 n0 3964 . 2 ( 𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 𝐹)
15 df-rex 2947 . 2 (∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦} ↔ ∃𝑥(𝑥𝑋𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
1613, 14, 153bitr4g 303 1 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 ≠ ∅ ↔ ∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wex 1744  wcel 2030  wne 2823  wrex 2942  {crab 2945  wss 3607  c0 3948  𝒫 cpw 4191   cuni 4468   cint 4507  cfv 5926  Filcfil 21696  UFilcufil 21750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-fbas 19791  df-fg 19792  df-fil 21697  df-ufil 21752
This theorem is referenced by:  uffinfix  21778
  Copyright terms: Public domain W3C validator