MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucnima Structured version   Visualization version   GIF version

Theorem ucnima 22132
Description: An equivalent statement of the definition of uniformly continuous function. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Hypotheses
Ref Expression
ucnprima.1 (𝜑𝑈 ∈ (UnifOn‘𝑋))
ucnprima.2 (𝜑𝑉 ∈ (UnifOn‘𝑌))
ucnprima.3 (𝜑𝐹 ∈ (𝑈 Cnu𝑉))
ucnprima.4 (𝜑𝑊𝑉)
ucnprima.5 𝐺 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
Assertion
Ref Expression
ucnima (𝜑 → ∃𝑟𝑈 (𝐺𝑟) ⊆ 𝑊)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑋,𝑦,𝑟   𝐹,𝑟   𝑥,𝐺,𝑦   𝑈,𝑟,𝑥,𝑦   𝑉,𝑟,𝑥   𝑊,𝑟,𝑥,𝑦   𝑋,𝑟   𝑌,𝑟,𝑥   𝜑,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐺(𝑟)   𝑉(𝑦)   𝑌(𝑦)

Proof of Theorem ucnima
Dummy variables 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ucnprima.4 . . . . 5 (𝜑𝑊𝑉)
2 ucnprima.3 . . . . . . 7 (𝜑𝐹 ∈ (𝑈 Cnu𝑉))
3 ucnprima.1 . . . . . . . 8 (𝜑𝑈 ∈ (UnifOn‘𝑋))
4 ucnprima.2 . . . . . . . 8 (𝜑𝑉 ∈ (UnifOn‘𝑌))
5 isucn 22129 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑤𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑤(𝐹𝑦)))))
63, 4, 5syl2anc 694 . . . . . . 7 (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑤𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑤(𝐹𝑦)))))
72, 6mpbid 222 . . . . . 6 (𝜑 → (𝐹:𝑋𝑌 ∧ ∀𝑤𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑤(𝐹𝑦))))
87simprd 478 . . . . 5 (𝜑 → ∀𝑤𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑤(𝐹𝑦)))
9 breq 4687 . . . . . . . . 9 (𝑤 = 𝑊 → ((𝐹𝑥)𝑤(𝐹𝑦) ↔ (𝐹𝑥)𝑊(𝐹𝑦)))
109imbi2d 329 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑥𝑟𝑦 → (𝐹𝑥)𝑤(𝐹𝑦)) ↔ (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))))
1110ralbidv 3015 . . . . . . 7 (𝑤 = 𝑊 → (∀𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑤(𝐹𝑦)) ↔ ∀𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))))
1211rexralbidv 3087 . . . . . 6 (𝑤 = 𝑊 → (∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑤(𝐹𝑦)) ↔ ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))))
1312rspcv 3336 . . . . 5 (𝑊𝑉 → (∀𝑤𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑤(𝐹𝑦)) → ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))))
141, 8, 13sylc 65 . . . 4 (𝜑 → ∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)))
15 simplll 813 . . . . . . . . 9 ((((𝜑𝑟𝑈) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝𝑟) → 𝜑)
16 simplr 807 . . . . . . . . 9 ((((𝜑𝑟𝑈) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝𝑟) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)))
1715, 16jca 553 . . . . . . . 8 ((((𝜑𝑟𝑈) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝𝑟) → (𝜑 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))))
18 ustssxp 22055 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑟𝑈) → 𝑟 ⊆ (𝑋 × 𝑋))
193, 18sylan 487 . . . . . . . . . 10 ((𝜑𝑟𝑈) → 𝑟 ⊆ (𝑋 × 𝑋))
2019sselda 3636 . . . . . . . . 9 (((𝜑𝑟𝑈) ∧ 𝑝𝑟) → 𝑝 ∈ (𝑋 × 𝑋))
2120adantlr 751 . . . . . . . 8 ((((𝜑𝑟𝑈) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝𝑟) → 𝑝 ∈ (𝑋 × 𝑋))
22 simpr 476 . . . . . . . 8 ((((𝜑𝑟𝑈) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝𝑟) → 𝑝𝑟)
23 simplr 807 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)))
24 simpr 476 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (𝑋 × 𝑋)) → 𝑝 ∈ (𝑋 × 𝑋))
25 elxp2 5166 . . . . . . . . . . . . . 14 (𝑝 ∈ (𝑋 × 𝑋) ↔ ∃𝑥𝑋𝑦𝑋 𝑝 = ⟨𝑥, 𝑦⟩)
2624, 25sylib 208 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (𝑋 × 𝑋)) → ∃𝑥𝑋𝑦𝑋 𝑝 = ⟨𝑥, 𝑦⟩)
27 simpr 476 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑝 = ⟨𝑥, 𝑦⟩) → 𝑝 = ⟨𝑥, 𝑦⟩)
2827eleq1d 2715 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 = ⟨𝑥, 𝑦⟩) → (𝑝𝑟 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑟))
2928adantlr 751 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → (𝑝𝑟 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑟))
30 df-br 4686 . . . . . . . . . . . . . . . . . 18 (𝑥𝑟𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑟)
3129, 30syl6bbr 278 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → (𝑝𝑟𝑥𝑟𝑦))
32 simplr 807 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → 𝑝 ∈ (𝑋 × 𝑋))
33 opex 4962 . . . . . . . . . . . . . . . . . . . . 21 ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩ ∈ V
34 ucnprima.5 . . . . . . . . . . . . . . . . . . . . . . 23 𝐺 = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
353, 4, 2, 1, 34ucnimalem 22131 . . . . . . . . . . . . . . . . . . . . . 22 𝐺 = (𝑝 ∈ (𝑋 × 𝑋) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
3635fvmpt2 6330 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ (𝑋 × 𝑋) ∧ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩ ∈ V) → (𝐺𝑝) = ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
3732, 33, 36sylancl 695 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → (𝐺𝑝) = ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
38 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → 𝑝 = ⟨𝑥, 𝑦⟩)
39 1st2nd2 7249 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑝 ∈ (𝑋 × 𝑋) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
4032, 39syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
4138, 40eqtr3d 2687 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → ⟨𝑥, 𝑦⟩ = ⟨(1st𝑝), (2nd𝑝)⟩)
42 vex 3234 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥 ∈ V
43 vex 3234 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑦 ∈ V
4442, 43opth 4974 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟨𝑥, 𝑦⟩ = ⟨(1st𝑝), (2nd𝑝)⟩ ↔ (𝑥 = (1st𝑝) ∧ 𝑦 = (2nd𝑝)))
4541, 44sylib 208 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → (𝑥 = (1st𝑝) ∧ 𝑦 = (2nd𝑝)))
4645simpld 474 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → 𝑥 = (1st𝑝))
4746fveq2d 6233 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → (𝐹𝑥) = (𝐹‘(1st𝑝)))
4845simprd 478 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → 𝑦 = (2nd𝑝))
4948fveq2d 6233 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → (𝐹𝑦) = (𝐹‘(2nd𝑝)))
5047, 49opeq12d 4441 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
5137, 50eqtr4d 2688 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → (𝐺𝑝) = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
5251eleq1d 2715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → ((𝐺𝑝) ∈ 𝑊 ↔ ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ 𝑊))
53 df-br 4686 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥)𝑊(𝐹𝑦) ↔ ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ 𝑊)
5452, 53syl6bbr 278 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → ((𝐺𝑝) ∈ 𝑊 ↔ (𝐹𝑥)𝑊(𝐹𝑦)))
5531, 54imbi12d 333 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝 = ⟨𝑥, 𝑦⟩) → ((𝑝𝑟 → (𝐺𝑝) ∈ 𝑊) ↔ (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))))
5655exbiri 651 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ (𝑋 × 𝑋)) → (𝑝 = ⟨𝑥, 𝑦⟩ → ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))))
5756reximdv 3045 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ (𝑋 × 𝑋)) → (∃𝑦𝑋 𝑝 = ⟨𝑥, 𝑦⟩ → ∃𝑦𝑋 ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))))
5857reximdv 3045 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (𝑋 × 𝑋)) → (∃𝑥𝑋𝑦𝑋 𝑝 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑋𝑦𝑋 ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))))
5926, 58mpd 15 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (𝑋 × 𝑋)) → ∃𝑥𝑋𝑦𝑋 ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊)))
6059adantlr 751 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∃𝑥𝑋𝑦𝑋 ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊)))
6123, 60r19.29d2r 3109 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) → ∃𝑥𝑋𝑦𝑋 ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) ∧ ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))))
62 pm3.35 610 . . . . . . . . . . . 12 (((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) ∧ ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))
6362rexlimivw 3058 . . . . . . . . . . 11 (∃𝑦𝑋 ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) ∧ ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))
6463rexlimivw 3058 . . . . . . . . . 10 (∃𝑥𝑋𝑦𝑋 ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) ∧ ((𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))
6561, 64syl 17 . . . . . . . . 9 (((𝜑 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) → (𝑝𝑟 → (𝐺𝑝) ∈ 𝑊))
6665imp 444 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝 ∈ (𝑋 × 𝑋)) ∧ 𝑝𝑟) → (𝐺𝑝) ∈ 𝑊)
6717, 21, 22, 66syl21anc 1365 . . . . . . 7 ((((𝜑𝑟𝑈) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) ∧ 𝑝𝑟) → (𝐺𝑝) ∈ 𝑊)
6867ralrimiva 2995 . . . . . 6 (((𝜑𝑟𝑈) ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦))) → ∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊)
6968ex 449 . . . . 5 ((𝜑𝑟𝑈) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → ∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊))
7069reximdva 3046 . . . 4 (𝜑 → (∃𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑊(𝐹𝑦)) → ∃𝑟𝑈𝑝𝑟 (𝐺𝑝) ∈ 𝑊))
7114, 70mpd 15 . . 3 (𝜑 → ∃𝑟𝑈𝑝𝑟 (𝐺𝑝) ∈ 𝑊)
7234mpt2fun 6804 . . . . . 6 Fun 𝐺
73 opex 4962 . . . . . . . 8 ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ V
7434, 73dmmpt2 7285 . . . . . . 7 dom 𝐺 = (𝑋 × 𝑋)
7519, 74syl6sseqr 3685 . . . . . 6 ((𝜑𝑟𝑈) → 𝑟 ⊆ dom 𝐺)
76 funimass4 6286 . . . . . 6 ((Fun 𝐺𝑟 ⊆ dom 𝐺) → ((𝐺𝑟) ⊆ 𝑊 ↔ ∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊))
7772, 75, 76sylancr 696 . . . . 5 ((𝜑𝑟𝑈) → ((𝐺𝑟) ⊆ 𝑊 ↔ ∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊))
7877biimprd 238 . . . 4 ((𝜑𝑟𝑈) → (∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 → (𝐺𝑟) ⊆ 𝑊))
7978ralrimiva 2995 . . 3 (𝜑 → ∀𝑟𝑈 (∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 → (𝐺𝑟) ⊆ 𝑊))
80 r19.29r 3102 . . 3 ((∃𝑟𝑈𝑝𝑟 (𝐺𝑝) ∈ 𝑊 ∧ ∀𝑟𝑈 (∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 → (𝐺𝑟) ⊆ 𝑊)) → ∃𝑟𝑈 (∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 ∧ (∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 → (𝐺𝑟) ⊆ 𝑊)))
8171, 79, 80syl2anc 694 . 2 (𝜑 → ∃𝑟𝑈 (∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 ∧ (∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 → (𝐺𝑟) ⊆ 𝑊)))
82 pm3.35 610 . . 3 ((∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 ∧ (∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 → (𝐺𝑟) ⊆ 𝑊)) → (𝐺𝑟) ⊆ 𝑊)
8382reximi 3040 . 2 (∃𝑟𝑈 (∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 ∧ (∀𝑝𝑟 (𝐺𝑝) ∈ 𝑊 → (𝐺𝑟) ⊆ 𝑊)) → ∃𝑟𝑈 (𝐺𝑟) ⊆ 𝑊)
8481, 83syl 17 1 (𝜑 → ∃𝑟𝑈 (𝐺𝑟) ⊆ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  wss 3607  cop 4216   class class class wbr 4685   × cxp 5141  dom cdm 5143  cima 5146  Fun wfun 5920  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  1st c1st 7208  2nd c2nd 7209  UnifOncust 22050   Cnucucn 22126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-map 7901  df-ust 22051  df-ucn 22127
This theorem is referenced by:  ucnprima  22133
  Copyright terms: Public domain W3C validator