MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucnextcn Structured version   Visualization version   GIF version

Theorem ucnextcn 22348
Description: Extension by continuity. Theorem 2 of [BourbakiTop1] p. II.20. Given an uniform space on a set 𝑋, a subset 𝐴 dense in 𝑋, and a function 𝐹 uniformly continuous from 𝐴 to 𝑌, that function can be extended by continuity to the whole 𝑋, and its extension is uniformly continuous. (Contributed by Thierry Arnoux, 25-Jan-2018.)
Hypotheses
Ref Expression
ucnextcn.x 𝑋 = (Base‘𝑉)
ucnextcn.y 𝑌 = (Base‘𝑊)
ucnextcn.j 𝐽 = (TopOpen‘𝑉)
ucnextcn.k 𝐾 = (TopOpen‘𝑊)
ucnextcn.s 𝑆 = (UnifSt‘𝑉)
ucnextcn.t 𝑇 = (UnifSt‘(𝑉s 𝐴))
ucnextcn.u 𝑈 = (UnifSt‘𝑊)
ucnextcn.v (𝜑𝑉 ∈ TopSp)
ucnextcn.r (𝜑𝑉 ∈ UnifSp)
ucnextcn.w (𝜑𝑊 ∈ TopSp)
ucnextcn.z (𝜑𝑊 ∈ CUnifSp)
ucnextcn.h (𝜑𝐾 ∈ Haus)
ucnextcn.a (𝜑𝐴𝑋)
ucnextcn.f (𝜑𝐹 ∈ (𝑇 Cnu𝑈))
ucnextcn.c (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)
Assertion
Ref Expression
ucnextcn (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾))

Proof of Theorem ucnextcn
Dummy variables 𝑎 𝑏 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ucnextcn.x . 2 𝑋 = (Base‘𝑉)
2 ucnextcn.y . 2 𝑌 = (Base‘𝑊)
3 ucnextcn.j . 2 𝐽 = (TopOpen‘𝑉)
4 ucnextcn.k . 2 𝐾 = (TopOpen‘𝑊)
5 ucnextcn.u . 2 𝑈 = (UnifSt‘𝑊)
6 ucnextcn.v . 2 (𝜑𝑉 ∈ TopSp)
7 ucnextcn.w . 2 (𝜑𝑊 ∈ TopSp)
8 ucnextcn.z . 2 (𝜑𝑊 ∈ CUnifSp)
9 ucnextcn.h . 2 (𝜑𝐾 ∈ Haus)
10 ucnextcn.a . 2 (𝜑𝐴𝑋)
11 ucnextcn.f . . . 4 (𝜑𝐹 ∈ (𝑇 Cnu𝑈))
12 ucnextcn.r . . . . . 6 (𝜑𝑉 ∈ UnifSp)
13 ucnextcn.t . . . . . . 7 𝑇 = (UnifSt‘(𝑉s 𝐴))
141, 13ressust 22308 . . . . . 6 ((𝑉 ∈ UnifSp ∧ 𝐴𝑋) → 𝑇 ∈ (UnifOn‘𝐴))
1512, 10, 14syl2anc 574 . . . . 5 (𝜑𝑇 ∈ (UnifOn‘𝐴))
16 cuspusp 22344 . . . . . . . 8 (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp)
178, 16syl 17 . . . . . . 7 (𝜑𝑊 ∈ UnifSp)
182, 5, 4isusp 22305 . . . . . . 7 (𝑊 ∈ UnifSp ↔ (𝑈 ∈ (UnifOn‘𝑌) ∧ 𝐾 = (unifTop‘𝑈)))
1917, 18sylib 209 . . . . . 6 (𝜑 → (𝑈 ∈ (UnifOn‘𝑌) ∧ 𝐾 = (unifTop‘𝑈)))
2019simpld 483 . . . . 5 (𝜑𝑈 ∈ (UnifOn‘𝑌))
21 isucn 22322 . . . . 5 ((𝑇 ∈ (UnifOn‘𝐴) ∧ 𝑈 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑇 Cnu𝑈) ↔ (𝐹:𝐴𝑌 ∧ ∀𝑤𝑈𝑣𝑇𝑦𝐴𝑧𝐴 (𝑦𝑣𝑧 → (𝐹𝑦)𝑤(𝐹𝑧)))))
2215, 20, 21syl2anc 574 . . . 4 (𝜑 → (𝐹 ∈ (𝑇 Cnu𝑈) ↔ (𝐹:𝐴𝑌 ∧ ∀𝑤𝑈𝑣𝑇𝑦𝐴𝑧𝐴 (𝑦𝑣𝑧 → (𝐹𝑦)𝑤(𝐹𝑧)))))
2311, 22mpbid 223 . . 3 (𝜑 → (𝐹:𝐴𝑌 ∧ ∀𝑤𝑈𝑣𝑇𝑦𝐴𝑧𝐴 (𝑦𝑣𝑧 → (𝐹𝑦)𝑤(𝐹𝑧))))
2423simpld 483 . 2 (𝜑𝐹:𝐴𝑌)
25 ucnextcn.c . 2 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)
2620adantr 467 . . . . 5 ((𝜑𝑥𝑋) → 𝑈 ∈ (UnifOn‘𝑌))
2726elfvexd 6380 . . . 4 ((𝜑𝑥𝑋) → 𝑌 ∈ V)
28 simpr 472 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥𝑋)
2925adantr 467 . . . . . . 7 ((𝜑𝑥𝑋) → ((cls‘𝐽)‘𝐴) = 𝑋)
3028, 29eleqtrrd 2856 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ ((cls‘𝐽)‘𝐴))
311, 3istps 20979 . . . . . . . . 9 (𝑉 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
326, 31sylib 209 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
3332adantr 467 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐽 ∈ (TopOn‘𝑋))
3410adantr 467 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐴𝑋)
35 trnei 21936 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋𝑥𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
3633, 34, 28, 35syl3anc 1480 . . . . . 6 ((𝜑𝑥𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴)))
3730, 36mpbid 223 . . . . 5 ((𝜑𝑥𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴))
38 filfbas 21892 . . . . 5 ((((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (Fil‘𝐴) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴))
3937, 38syl 17 . . . 4 ((𝜑𝑥𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴))
4024adantr 467 . . . 4 ((𝜑𝑥𝑋) → 𝐹:𝐴𝑌)
41 fmval 21987 . . . 4 ((𝑌 ∈ V ∧ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴) ∧ 𝐹:𝐴𝑌) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝑌filGenran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎))))
4227, 39, 40, 41syl3anc 1480 . . 3 ((𝜑𝑥𝑋) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) = (𝑌filGenran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎))))
4315adantr 467 . . . . 5 ((𝜑𝑥𝑋) → 𝑇 ∈ (UnifOn‘𝐴))
4411adantr 467 . . . . 5 ((𝜑𝑥𝑋) → 𝐹 ∈ (𝑇 Cnu𝑈))
45 ucnextcn.s . . . . . . . . . . 11 𝑆 = (UnifSt‘𝑉)
461, 45, 3isusp 22305 . . . . . . . . . 10 (𝑉 ∈ UnifSp ↔ (𝑆 ∈ (UnifOn‘𝑋) ∧ 𝐽 = (unifTop‘𝑆)))
4712, 46sylib 209 . . . . . . . . 9 (𝜑 → (𝑆 ∈ (UnifOn‘𝑋) ∧ 𝐽 = (unifTop‘𝑆)))
4847simpld 483 . . . . . . . 8 (𝜑𝑆 ∈ (UnifOn‘𝑋))
4948adantr 467 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑆 ∈ (UnifOn‘𝑋))
5012adantr 467 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑉 ∈ UnifSp)
516adantr 467 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑉 ∈ TopSp)
521, 3, 45neipcfilu 22340 . . . . . . . 8 ((𝑉 ∈ UnifSp ∧ 𝑉 ∈ TopSp ∧ 𝑥𝑋) → ((nei‘𝐽)‘{𝑥}) ∈ (CauFilu𝑆))
5350, 51, 28, 52syl3anc 1480 . . . . . . 7 ((𝜑𝑥𝑋) → ((nei‘𝐽)‘{𝑥}) ∈ (CauFilu𝑆))
54 0nelfb 21875 . . . . . . . 8 ((((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (fBas‘𝐴) → ¬ ∅ ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))
5539, 54syl 17 . . . . . . 7 ((𝜑𝑥𝑋) → ¬ ∅ ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))
56 trcfilu 22338 . . . . . . 7 ((𝑆 ∈ (UnifOn‘𝑋) ∧ (((nei‘𝐽)‘{𝑥}) ∈ (CauFilu𝑆) ∧ ¬ ∅ ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∧ 𝐴𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (CauFilu‘(𝑆t (𝐴 × 𝐴))))
5749, 53, 55, 34, 56syl121anc 1484 . . . . . 6 ((𝜑𝑥𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (CauFilu‘(𝑆t (𝐴 × 𝐴))))
5843elfvexd 6380 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐴 ∈ V)
59 ressuss 22307 . . . . . . . . 9 (𝐴 ∈ V → (UnifSt‘(𝑉s 𝐴)) = ((UnifSt‘𝑉) ↾t (𝐴 × 𝐴)))
6045oveq1i 6822 . . . . . . . . 9 (𝑆t (𝐴 × 𝐴)) = ((UnifSt‘𝑉) ↾t (𝐴 × 𝐴))
6159, 13, 603eqtr4g 2833 . . . . . . . 8 (𝐴 ∈ V → 𝑇 = (𝑆t (𝐴 × 𝐴)))
6261fveq2d 6352 . . . . . . 7 (𝐴 ∈ V → (CauFilu𝑇) = (CauFilu‘(𝑆t (𝐴 × 𝐴))))
6358, 62syl 17 . . . . . 6 ((𝜑𝑥𝑋) → (CauFilu𝑇) = (CauFilu‘(𝑆t (𝐴 × 𝐴))))
6457, 63eleqtrrd 2856 . . . . 5 ((𝜑𝑥𝑋) → (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ∈ (CauFilu𝑇))
65 imaeq2 5613 . . . . . . 7 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
6665cbvmptv 4897 . . . . . 6 (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎)) = (𝑏 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑏))
6766rneqi 5502 . . . . 5 ran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎)) = ran (𝑏 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑏))
6843, 26, 44, 64, 67fmucnd 22336 . . . 4 ((𝜑𝑥𝑋) → ran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎)) ∈ (CauFilu𝑈))
69 cfilufg 22337 . . . 4 ((𝑈 ∈ (UnifOn‘𝑌) ∧ ran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎)) ∈ (CauFilu𝑈)) → (𝑌filGenran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎))) ∈ (CauFilu𝑈))
7026, 68, 69syl2anc 574 . . 3 ((𝜑𝑥𝑋) → (𝑌filGenran (𝑎 ∈ (((nei‘𝐽)‘{𝑥}) ↾t 𝐴) ↦ (𝐹𝑎))) ∈ (CauFilu𝑈))
7142, 70eqeltrd 2853 . 2 ((𝜑𝑥𝑋) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (CauFilu𝑈))
721, 2, 3, 4, 5, 6, 7, 8, 9, 10, 24, 25, 71cnextucn 22347 1 (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 383   = wceq 1634  wcel 2148  wral 3064  wrex 3065  Vcvv 3355  wss 3729  c0 4073  {csn 4326   class class class wbr 4797  cmpt 4876   × cxp 5261  ran crn 5264  cima 5266  wf 6038  cfv 6042  (class class class)co 6812  Basecbs 16084  s cress 16085  t crest 16309  TopOpenctopn 16310  fBascfbas 19969  filGencfg 19970  TopOnctopon 20955  TopSpctps 20977  clsccl 21063  neicnei 21142   Cn ccn 21269  Hauscha 21353  Filcfil 21889   FilMap cfm 21977  CnExtccnext 22103  UnifOncust 22243  unifTopcutop 22274  UnifStcuss 22297  UnifSpcusp 22298   Cnucucn 22319  CauFiluccfilu 22330  CUnifSpccusp 22341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117  ax-cnex 10215  ax-resscn 10216  ax-1cn 10217  ax-icn 10218  ax-addcl 10219  ax-addrcl 10220  ax-mulcl 10221  ax-mulrcl 10222  ax-mulcom 10223  ax-addass 10224  ax-mulass 10225  ax-distr 10226  ax-i2m1 10227  ax-1ne0 10228  ax-1rid 10229  ax-rnegex 10230  ax-rrecex 10231  ax-cnre 10232  ax-pre-lttri 10233  ax-pre-lttrn 10234  ax-pre-ltadd 10235  ax-pre-mulgt0 10236
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-int 4623  df-iun 4667  df-iin 4668  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-riota 6773  df-ov 6815  df-oprab 6816  df-mpt2 6817  df-om 7234  df-1st 7336  df-2nd 7337  df-wrecs 7580  df-recs 7642  df-rdg 7680  df-1o 7734  df-oadd 7738  df-er 7917  df-map 8032  df-pm 8033  df-en 8131  df-dom 8132  df-sdom 8133  df-fin 8134  df-fi 8494  df-pnf 10299  df-mnf 10300  df-xr 10301  df-ltxr 10302  df-le 10303  df-sub 10491  df-neg 10492  df-nn 11244  df-2 11302  df-3 11303  df-4 11304  df-5 11305  df-6 11306  df-7 11307  df-8 11308  df-9 11309  df-n0 11517  df-z 11602  df-dec 11718  df-ndx 16087  df-slot 16088  df-base 16090  df-sets 16091  df-ress 16092  df-unif 16193  df-rest 16311  df-topgen 16332  df-fbas 19978  df-fg 19979  df-top 20939  df-topon 20956  df-topsp 20978  df-bases 20991  df-cld 21064  df-ntr 21065  df-cls 21066  df-nei 21143  df-cn 21272  df-cnp 21273  df-haus 21360  df-reg 21361  df-tx 21606  df-fil 21890  df-fm 21982  df-flim 21983  df-flf 21984  df-cnext 22104  df-ust 22244  df-utop 22275  df-uss 22300  df-usp 22301  df-ucn 22320  df-cfilu 22331  df-cusp 22342
This theorem is referenced by:  rrhcn  30398
  Copyright terms: Public domain W3C validator