Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucncn Structured version   Visualization version   GIF version

Theorem ucncn 22136
 Description: Uniform continuity implies continuity. Deduction form. Proposition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 30-Nov-2017.)
Hypotheses
Ref Expression
ucncn.j 𝐽 = (TopOpen‘𝑅)
ucncn.k 𝐾 = (TopOpen‘𝑆)
ucncn.1 (𝜑𝑅 ∈ UnifSp)
ucncn.2 (𝜑𝑆 ∈ UnifSp)
ucncn.3 (𝜑𝑅 ∈ TopSp)
ucncn.4 (𝜑𝑆 ∈ TopSp)
ucncn.5 (𝜑𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)))
Assertion
Ref Expression
ucncn (𝜑𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem ucncn
Dummy variables 𝑟 𝑎 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ucncn.5 . . . 4 (𝜑𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)))
2 ucncn.1 . . . . . 6 (𝜑𝑅 ∈ UnifSp)
3 eqid 2651 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2651 . . . . . . . 8 (UnifSt‘𝑅) = (UnifSt‘𝑅)
5 ucncn.j . . . . . . . 8 𝐽 = (TopOpen‘𝑅)
63, 4, 5isusp 22112 . . . . . . 7 (𝑅 ∈ UnifSp ↔ ((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) ∧ 𝐽 = (unifTop‘(UnifSt‘𝑅))))
76simplbi 475 . . . . . 6 (𝑅 ∈ UnifSp → (UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)))
82, 7syl 17 . . . . 5 (𝜑 → (UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)))
9 ucncn.2 . . . . . 6 (𝜑𝑆 ∈ UnifSp)
10 eqid 2651 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
11 eqid 2651 . . . . . . . 8 (UnifSt‘𝑆) = (UnifSt‘𝑆)
12 ucncn.k . . . . . . . 8 𝐾 = (TopOpen‘𝑆)
1310, 11, 12isusp 22112 . . . . . . 7 (𝑆 ∈ UnifSp ↔ ((UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)) ∧ 𝐾 = (unifTop‘(UnifSt‘𝑆))))
1413simplbi 475 . . . . . 6 (𝑆 ∈ UnifSp → (UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)))
159, 14syl 17 . . . . 5 (𝜑 → (UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)))
16 isucn 22129 . . . . 5 (((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) ∧ (UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆))) → (𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)) ↔ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑠 ∈ (UnifSt‘𝑆)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))))
178, 15, 16syl2anc 694 . . . 4 (𝜑 → (𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)) ↔ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑠 ∈ (UnifSt‘𝑆)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))))
181, 17mpbid 222 . . 3 (𝜑 → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑠 ∈ (UnifSt‘𝑆)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))))
1918simpld 474 . 2 (𝜑𝐹:(Base‘𝑅)⟶(Base‘𝑆))
20 cnvimass 5520 . . . . 5 (𝐹𝑎) ⊆ dom 𝐹
21 fdm 6089 . . . . . . 7 (𝐹:(Base‘𝑅)⟶(Base‘𝑆) → dom 𝐹 = (Base‘𝑅))
2219, 21syl 17 . . . . . 6 (𝜑 → dom 𝐹 = (Base‘𝑅))
2322adantr 480 . . . . 5 ((𝜑𝑎𝐾) → dom 𝐹 = (Base‘𝑅))
2420, 23syl5sseq 3686 . . . 4 ((𝜑𝑎𝐾) → (𝐹𝑎) ⊆ (Base‘𝑅))
25 simplll 813 . . . . . . . . 9 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → 𝜑)
26 simpr 476 . . . . . . . . 9 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → 𝑠 ∈ (UnifSt‘𝑆))
2724ad2antrr 762 . . . . . . . . . 10 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → (𝐹𝑎) ⊆ (Base‘𝑅))
28 simplr 807 . . . . . . . . . 10 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → 𝑥 ∈ (𝐹𝑎))
2927, 28sseldd 3637 . . . . . . . . 9 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → 𝑥 ∈ (Base‘𝑅))
3018simprd 478 . . . . . . . . . . . 12 (𝜑 → ∀𝑠 ∈ (UnifSt‘𝑆)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3130r19.21bi 2961 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (UnifSt‘𝑆)) → ∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
32 r19.12 3092 . . . . . . . . . . 11 (∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) → ∀𝑥 ∈ (Base‘𝑅)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3331, 32syl 17 . . . . . . . . . 10 ((𝜑𝑠 ∈ (UnifSt‘𝑆)) → ∀𝑥 ∈ (Base‘𝑅)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3433r19.21bi 2961 . . . . . . . . 9 (((𝜑𝑠 ∈ (UnifSt‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → ∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3525, 26, 29, 34syl21anc 1365 . . . . . . . 8 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → ∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3635adantr 480 . . . . . . 7 (((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) → ∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3725ad3antrrr 766 . . . . . . . . . 10 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → 𝜑)
388ad5antr 773 . . . . . . . . . . . 12 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → (UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)))
39 simpr 476 . . . . . . . . . . . 12 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → 𝑟 ∈ (UnifSt‘𝑅))
40 ustrel 22062 . . . . . . . . . . . 12 (((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → Rel 𝑟)
4138, 39, 40syl2anc 694 . . . . . . . . . . 11 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → Rel 𝑟)
4241adantr 480 . . . . . . . . . 10 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → Rel 𝑟)
4337, 8syl 17 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → (UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)))
44 simplr 807 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → 𝑟 ∈ (UnifSt‘𝑅))
4529ad3antrrr 766 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → 𝑥 ∈ (Base‘𝑅))
46 ustimasn 22079 . . . . . . . . . . 11 (((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) ∧ 𝑟 ∈ (UnifSt‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑟 “ {𝑥}) ⊆ (Base‘𝑅))
4743, 44, 45, 46syl3anc 1366 . . . . . . . . . 10 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → (𝑟 “ {𝑥}) ⊆ (Base‘𝑅))
48 simpr 476 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
49 simplr 807 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → 𝑧 ∈ (Base‘𝑅))
50 simpllr 815 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎)
5115ad5antr 773 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → (UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)))
52 simpllr 815 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → 𝑠 ∈ (UnifSt‘𝑆))
53 ustrel 22062 . . . . . . . . . . . . . . . . . . . 20 (((UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → Rel 𝑠)
5451, 52, 53syl2anc 694 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → Rel 𝑠)
55 elrelimasn 5524 . . . . . . . . . . . . . . . . . . 19 (Rel 𝑠 → ((𝐹𝑧) ∈ (𝑠 “ {(𝐹𝑥)}) ↔ (𝐹𝑥)𝑠(𝐹𝑧)))
5654, 55syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → ((𝐹𝑧) ∈ (𝑠 “ {(𝐹𝑥)}) ↔ (𝐹𝑥)𝑠(𝐹𝑧)))
5756biimpar 501 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝐹𝑧) ∈ (𝑠 “ {(𝐹𝑥)}))
5850, 57sseldd 3637 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝐹𝑧) ∈ 𝑎)
5958adantlr 751 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝐹𝑧) ∈ 𝑎)
60 ffn 6083 . . . . . . . . . . . . . . . . 17 (𝐹:(Base‘𝑅)⟶(Base‘𝑆) → 𝐹 Fn (Base‘𝑅))
61 elpreima 6377 . . . . . . . . . . . . . . . . 17 (𝐹 Fn (Base‘𝑅) → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧 ∈ (Base‘𝑅) ∧ (𝐹𝑧) ∈ 𝑎)))
6219, 60, 613syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧 ∈ (Base‘𝑅) ∧ (𝐹𝑧) ∈ 𝑎)))
6362ad7antr 781 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧 ∈ (Base‘𝑅) ∧ (𝐹𝑧) ∈ 𝑎)))
6449, 59, 63mpbir2and 977 . . . . . . . . . . . . . 14 ((((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → 𝑧 ∈ (𝐹𝑎))
6564ex 449 . . . . . . . . . . . . 13 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎)))
6665ralrimiva 2995 . . . . . . . . . . . 12 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → ∀𝑧 ∈ (Base‘𝑅)((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎)))
6766adantr 480 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → ∀𝑧 ∈ (Base‘𝑅)((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎)))
68 r19.26 3093 . . . . . . . . . . . 12 (∀𝑧 ∈ (Base‘𝑅)((𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))) ↔ (∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ∀𝑧 ∈ (Base‘𝑅)((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))))
69 pm3.33 608 . . . . . . . . . . . . 13 (((𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))) → (𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
7069ralimi 2981 . . . . . . . . . . . 12 (∀𝑧 ∈ (Base‘𝑅)((𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
7168, 70sylbir 225 . . . . . . . . . . 11 ((∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ∀𝑧 ∈ (Base‘𝑅)((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
7248, 67, 71syl2anc 694 . . . . . . . . . 10 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
73 simpl2l 1134 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → Rel 𝑟)
74 simpr 476 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → 𝑦 ∈ (𝑟 “ {𝑥}))
75 elrelimasn 5524 . . . . . . . . . . . . . . 15 (Rel 𝑟 → (𝑦 ∈ (𝑟 “ {𝑥}) ↔ 𝑥𝑟𝑦))
7675biimpa 500 . . . . . . . . . . . . . 14 ((Rel 𝑟𝑦 ∈ (𝑟 “ {𝑥})) → 𝑥𝑟𝑦)
7773, 74, 76syl2anc 694 . . . . . . . . . . . . 13 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → 𝑥𝑟𝑦)
78 simpl2r 1135 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → (𝑟 “ {𝑥}) ⊆ (Base‘𝑅))
7978, 74sseldd 3637 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → 𝑦 ∈ (Base‘𝑅))
80 simpl3 1086 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
81 breq2 4689 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → (𝑥𝑟𝑧𝑥𝑟𝑦))
82 eleq1 2718 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → (𝑧 ∈ (𝐹𝑎) ↔ 𝑦 ∈ (𝐹𝑎)))
8381, 82imbi12d 333 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → ((𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)) ↔ (𝑥𝑟𝑦𝑦 ∈ (𝐹𝑎))))
8483rspcv 3336 . . . . . . . . . . . . . 14 (𝑦 ∈ (Base‘𝑅) → (∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)) → (𝑥𝑟𝑦𝑦 ∈ (𝐹𝑎))))
8579, 80, 84sylc 65 . . . . . . . . . . . . 13 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → (𝑥𝑟𝑦𝑦 ∈ (𝐹𝑎)))
8677, 85mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → 𝑦 ∈ (𝐹𝑎))
8786ex 449 . . . . . . . . . . 11 ((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) → (𝑦 ∈ (𝑟 “ {𝑥}) → 𝑦 ∈ (𝐹𝑎)))
8887ssrdv 3642 . . . . . . . . . 10 ((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) → (𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
8937, 42, 47, 72, 88syl121anc 1371 . . . . . . . . 9 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → (𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
9089ex 449 . . . . . . . 8 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → (∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) → (𝑟 “ {𝑥}) ⊆ (𝐹𝑎)))
9190reximdva 3046 . . . . . . 7 (((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) → (∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) → ∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎)))
9236, 91mpd 15 . . . . . 6 (((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) → ∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
93 elpreima 6377 . . . . . . . . . . 11 (𝐹 Fn (Base‘𝑅) → (𝑥 ∈ (𝐹𝑎) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ 𝑎)))
9419, 60, 933syl 18 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐹𝑎) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ 𝑎)))
9594adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐾) → (𝑥 ∈ (𝐹𝑎) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ 𝑎)))
9695biimpa 500 . . . . . . . 8 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ 𝑎))
9796simprd 478 . . . . . . 7 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → (𝐹𝑥) ∈ 𝑎)
98 simpr 476 . . . . . . . . . . 11 ((𝜑𝑎𝐾) → 𝑎𝐾)
9913simprbi 479 . . . . . . . . . . . . 13 (𝑆 ∈ UnifSp → 𝐾 = (unifTop‘(UnifSt‘𝑆)))
1009, 99syl 17 . . . . . . . . . . . 12 (𝜑𝐾 = (unifTop‘(UnifSt‘𝑆)))
101100adantr 480 . . . . . . . . . . 11 ((𝜑𝑎𝐾) → 𝐾 = (unifTop‘(UnifSt‘𝑆)))
10298, 101eleqtrd 2732 . . . . . . . . . 10 ((𝜑𝑎𝐾) → 𝑎 ∈ (unifTop‘(UnifSt‘𝑆)))
103 elutop 22084 . . . . . . . . . . . 12 ((UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)) → (𝑎 ∈ (unifTop‘(UnifSt‘𝑆)) ↔ (𝑎 ⊆ (Base‘𝑆) ∧ ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)))
10415, 103syl 17 . . . . . . . . . . 11 (𝜑 → (𝑎 ∈ (unifTop‘(UnifSt‘𝑆)) ↔ (𝑎 ⊆ (Base‘𝑆) ∧ ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)))
105104adantr 480 . . . . . . . . . 10 ((𝜑𝑎𝐾) → (𝑎 ∈ (unifTop‘(UnifSt‘𝑆)) ↔ (𝑎 ⊆ (Base‘𝑆) ∧ ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)))
106102, 105mpbid 222 . . . . . . . . 9 ((𝜑𝑎𝐾) → (𝑎 ⊆ (Base‘𝑆) ∧ ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎))
107106simprd 478 . . . . . . . 8 ((𝜑𝑎𝐾) → ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)
108107adantr 480 . . . . . . 7 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)
109 sneq 4220 . . . . . . . . . . 11 (𝑦 = (𝐹𝑥) → {𝑦} = {(𝐹𝑥)})
110109imaeq2d 5501 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) → (𝑠 “ {𝑦}) = (𝑠 “ {(𝐹𝑥)}))
111110sseq1d 3665 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → ((𝑠 “ {𝑦}) ⊆ 𝑎 ↔ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎))
112111rexbidv 3081 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (∃𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎 ↔ ∃𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎))
113112rspcv 3336 . . . . . . 7 ((𝐹𝑥) ∈ 𝑎 → (∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎 → ∃𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎))
11497, 108, 113sylc 65 . . . . . 6 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → ∃𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎)
11592, 114r19.29a 3107 . . . . 5 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → ∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
116115ralrimiva 2995 . . . 4 ((𝜑𝑎𝐾) → ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
1176simprbi 479 . . . . . . . 8 (𝑅 ∈ UnifSp → 𝐽 = (unifTop‘(UnifSt‘𝑅)))
1182, 117syl 17 . . . . . . 7 (𝜑𝐽 = (unifTop‘(UnifSt‘𝑅)))
119118adantr 480 . . . . . 6 ((𝜑𝑎𝐾) → 𝐽 = (unifTop‘(UnifSt‘𝑅)))
120119eleq2d 2716 . . . . 5 ((𝜑𝑎𝐾) → ((𝐹𝑎) ∈ 𝐽 ↔ (𝐹𝑎) ∈ (unifTop‘(UnifSt‘𝑅))))
121 elutop 22084 . . . . . . 7 ((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) → ((𝐹𝑎) ∈ (unifTop‘(UnifSt‘𝑅)) ↔ ((𝐹𝑎) ⊆ (Base‘𝑅) ∧ ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))))
1228, 121syl 17 . . . . . 6 (𝜑 → ((𝐹𝑎) ∈ (unifTop‘(UnifSt‘𝑅)) ↔ ((𝐹𝑎) ⊆ (Base‘𝑅) ∧ ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))))
123122adantr 480 . . . . 5 ((𝜑𝑎𝐾) → ((𝐹𝑎) ∈ (unifTop‘(UnifSt‘𝑅)) ↔ ((𝐹𝑎) ⊆ (Base‘𝑅) ∧ ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))))
124120, 123bitrd 268 . . . 4 ((𝜑𝑎𝐾) → ((𝐹𝑎) ∈ 𝐽 ↔ ((𝐹𝑎) ⊆ (Base‘𝑅) ∧ ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))))
12524, 116, 124mpbir2and 977 . . 3 ((𝜑𝑎𝐾) → (𝐹𝑎) ∈ 𝐽)
126125ralrimiva 2995 . 2 (𝜑 → ∀𝑎𝐾 (𝐹𝑎) ∈ 𝐽)
127 ucncn.3 . . . 4 (𝜑𝑅 ∈ TopSp)
1283, 5istps 20786 . . . 4 (𝑅 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑅)))
129127, 128sylib 208 . . 3 (𝜑𝐽 ∈ (TopOn‘(Base‘𝑅)))
130 ucncn.4 . . . 4 (𝜑𝑆 ∈ TopSp)
13110, 12istps 20786 . . . 4 (𝑆 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝑆)))
132130, 131sylib 208 . . 3 (𝜑𝐾 ∈ (TopOn‘(Base‘𝑆)))
133 iscn 21087 . . 3 ((𝐽 ∈ (TopOn‘(Base‘𝑅)) ∧ 𝐾 ∈ (TopOn‘(Base‘𝑆))) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝐽)))
134129, 132, 133syl2anc 694 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝐽)))
13519, 126, 134mpbir2and 977 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942   ⊆ wss 3607  {csn 4210   class class class wbr 4685  ◡ccnv 5142  dom cdm 5143   “ cima 5146  Rel wrel 5148   Fn wfn 5921  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  TopOpenctopn 16129  TopOnctopon 20763  TopSpctps 20784   Cn ccn 21076  UnifOncust 22050  unifTopcutop 22081  UnifStcuss 22104  UnifSpcusp 22105   Cnucucn 22126 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-map 7901  df-top 20747  df-topon 20764  df-topsp 20785  df-cn 21079  df-ust 22051  df-utop 22082  df-usp 22108  df-ucn 22127 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator