Proof of Theorem ubthlem2
Step | Hyp | Ref
| Expression |
1 | | ubthlem.10 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℕ) |
2 | 1 | nnrpd 12083 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈
ℝ+) |
3 | 2, 2 | rpaddcld 12100 |
. . . 4
⊢ (𝜑 → (𝐾 + 𝐾) ∈
ℝ+) |
4 | | ubthlem.12 |
. . . 4
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
5 | 3, 4 | rpdivcld 12102 |
. . 3
⊢ (𝜑 → ((𝐾 + 𝐾) / 𝑅) ∈
ℝ+) |
6 | 5 | rpred 12085 |
. 2
⊢ (𝜑 → ((𝐾 + 𝐾) / 𝑅) ∈ ℝ) |
7 | | oveq2 6822 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) → (𝑃𝐷𝑧) = (𝑃𝐷(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) |
8 | 7 | breq1d 4814 |
. . . . . . . . 9
⊢ (𝑧 = (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) → ((𝑃𝐷𝑧) ≤ 𝑅 ↔ (𝑃𝐷(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) ≤ 𝑅)) |
9 | | eleq1 2827 |
. . . . . . . . 9
⊢ (𝑧 = (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) → (𝑧 ∈ (𝐴‘𝐾) ↔ (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ (𝐴‘𝐾))) |
10 | 8, 9 | imbi12d 333 |
. . . . . . . 8
⊢ (𝑧 = (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) → (((𝑃𝐷𝑧) ≤ 𝑅 → 𝑧 ∈ (𝐴‘𝐾)) ↔ ((𝑃𝐷(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) ≤ 𝑅 → (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ (𝐴‘𝐾)))) |
11 | | ubthlem.13 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝐴‘𝐾)) |
12 | | rabss 3820 |
. . . . . . . . . 10
⊢ ({𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝐴‘𝐾) ↔ ∀𝑧 ∈ 𝑋 ((𝑃𝐷𝑧) ≤ 𝑅 → 𝑧 ∈ (𝐴‘𝐾))) |
13 | 11, 12 | sylib 208 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 ((𝑃𝐷𝑧) ≤ 𝑅 → 𝑧 ∈ (𝐴‘𝐾))) |
14 | 13 | ad2antrr 764 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ∀𝑧 ∈ 𝑋 ((𝑃𝐷𝑧) ≤ 𝑅 → 𝑧 ∈ (𝐴‘𝐾))) |
15 | | ubthlem.5 |
. . . . . . . . . . 11
⊢ 𝑈 ∈ CBan |
16 | | bnnv 28052 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ CBan → 𝑈 ∈
NrmCVec) |
17 | 15, 16 | ax-mp 5 |
. . . . . . . . . 10
⊢ 𝑈 ∈ NrmCVec |
18 | 17 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝑈 ∈ NrmCVec) |
19 | | ubthlem.11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ 𝑋) |
20 | 19 | ad2antrr 764 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝑃 ∈ 𝑋) |
21 | 4 | ad2antrr 764 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝑅 ∈
ℝ+) |
22 | 21 | rpcnd 12087 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝑅 ∈ ℂ) |
23 | | simpr 479 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
24 | | ubth.1 |
. . . . . . . . . . 11
⊢ 𝑋 = (BaseSet‘𝑈) |
25 | | eqid 2760 |
. . . . . . . . . . 11
⊢ (
·𝑠OLD ‘𝑈) = ( ·𝑠OLD
‘𝑈) |
26 | 24, 25 | nvscl 27811 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑅 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → (𝑅( ·𝑠OLD
‘𝑈)𝑥) ∈ 𝑋) |
27 | 18, 22, 23, 26 | syl3anc 1477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑅( ·𝑠OLD
‘𝑈)𝑥) ∈ 𝑋) |
28 | | eqid 2760 |
. . . . . . . . . 10
⊢ (
+𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) |
29 | 24, 28 | nvgcl 27805 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑃 ∈ 𝑋 ∧ (𝑅( ·𝑠OLD
‘𝑈)𝑥) ∈ 𝑋) → (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ 𝑋) |
30 | 18, 20, 27, 29 | syl3anc 1477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ 𝑋) |
31 | 10, 14, 30 | rspcdva 3455 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑃𝐷(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) ≤ 𝑅 → (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ (𝐴‘𝐾))) |
32 | | ubthlem.3 |
. . . . . . . . . . . . . . . 16
⊢ 𝐷 = (IndMet‘𝑈) |
33 | 24, 32 | cbncms 28051 |
. . . . . . . . . . . . . . 15
⊢ (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋)) |
34 | 15, 33 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ 𝐷 ∈ (CMet‘𝑋) |
35 | | cmetmet 23304 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
36 | | metxmet 22360 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
37 | 34, 35, 36 | mp2b 10 |
. . . . . . . . . . . . 13
⊢ 𝐷 ∈ (∞Met‘𝑋) |
38 | 37 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
39 | | xmetsym 22373 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ 𝑋) → (𝑃𝐷(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) = ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))𝐷𝑃)) |
40 | 38, 20, 30, 39 | syl3anc 1477 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑃𝐷(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) = ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))𝐷𝑃)) |
41 | | eqid 2760 |
. . . . . . . . . . . . 13
⊢ (
−𝑣 ‘𝑈) = ( −𝑣
‘𝑈) |
42 | | eqid 2760 |
. . . . . . . . . . . . 13
⊢
(normCV‘𝑈) = (normCV‘𝑈) |
43 | 24, 41, 42, 32 | imsdval 27871 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑃( +𝑣
‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋) → ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))𝐷𝑃) = ((normCV‘𝑈)‘((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))( −𝑣 ‘𝑈)𝑃))) |
44 | 18, 30, 20, 43 | syl3anc 1477 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))𝐷𝑃) = ((normCV‘𝑈)‘((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))( −𝑣 ‘𝑈)𝑃))) |
45 | 24, 28, 41 | nvpncan2 27838 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑃 ∈ 𝑋 ∧ (𝑅( ·𝑠OLD
‘𝑈)𝑥) ∈ 𝑋) → ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))( −𝑣 ‘𝑈)𝑃) = (𝑅( ·𝑠OLD
‘𝑈)𝑥)) |
46 | 18, 20, 27, 45 | syl3anc 1477 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))( −𝑣 ‘𝑈)𝑃) = (𝑅( ·𝑠OLD
‘𝑈)𝑥)) |
47 | 46 | fveq2d 6357 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((normCV‘𝑈)‘((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))( −𝑣 ‘𝑈)𝑃)) = ((normCV‘𝑈)‘(𝑅( ·𝑠OLD
‘𝑈)𝑥))) |
48 | 40, 44, 47 | 3eqtrd 2798 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑃𝐷(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) = ((normCV‘𝑈)‘(𝑅( ·𝑠OLD
‘𝑈)𝑥))) |
49 | 21 | rprege0d 12092 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅)) |
50 | 24, 25, 42 | nvsge0 27849 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ 𝑥 ∈ 𝑋) → ((normCV‘𝑈)‘(𝑅( ·𝑠OLD
‘𝑈)𝑥)) = (𝑅 · ((normCV‘𝑈)‘𝑥))) |
51 | 18, 49, 23, 50 | syl3anc 1477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((normCV‘𝑈)‘(𝑅( ·𝑠OLD
‘𝑈)𝑥)) = (𝑅 · ((normCV‘𝑈)‘𝑥))) |
52 | 48, 51 | eqtrd 2794 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑃𝐷(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) = (𝑅 · ((normCV‘𝑈)‘𝑥))) |
53 | 22 | mulid1d 10269 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑅 · 1) = 𝑅) |
54 | 53 | eqcomd 2766 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝑅 = (𝑅 · 1)) |
55 | 52, 54 | breq12d 4817 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑃𝐷(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) ≤ 𝑅 ↔ (𝑅 · ((normCV‘𝑈)‘𝑥)) ≤ (𝑅 · 1))) |
56 | 24, 42 | nvcl 27846 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋) → ((normCV‘𝑈)‘𝑥) ∈ ℝ) |
57 | 17, 56 | mpan 708 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑋 → ((normCV‘𝑈)‘𝑥) ∈ ℝ) |
58 | 57 | adantl 473 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((normCV‘𝑈)‘𝑥) ∈ ℝ) |
59 | | 1red 10267 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 1 ∈ ℝ) |
60 | 58, 59, 21 | lemul2d 12129 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (((normCV‘𝑈)‘𝑥) ≤ 1 ↔ (𝑅 · ((normCV‘𝑈)‘𝑥)) ≤ (𝑅 · 1))) |
61 | 55, 60 | bitr4d 271 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑃𝐷(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) ≤ 𝑅 ↔ ((normCV‘𝑈)‘𝑥) ≤ 1)) |
62 | | breq2 4808 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝐾 → ((𝑁‘(𝑡‘𝑧)) ≤ 𝑘 ↔ (𝑁‘(𝑡‘𝑧)) ≤ 𝐾)) |
63 | 62 | ralbidv 3124 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐾 → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾)) |
64 | 63 | rabbidv 3329 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐾 → {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘} = {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾}) |
65 | | ubthlem.9 |
. . . . . . . . . . . 12
⊢ 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘}) |
66 | | fvex 6363 |
. . . . . . . . . . . . . 14
⊢
(BaseSet‘𝑈)
∈ V |
67 | 24, 66 | eqeltri 2835 |
. . . . . . . . . . . . 13
⊢ 𝑋 ∈ V |
68 | 67 | rabex 4964 |
. . . . . . . . . . . 12
⊢ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾} ∈ V |
69 | 64, 65, 68 | fvmpt 6445 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ ℕ → (𝐴‘𝐾) = {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾}) |
70 | 1, 69 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴‘𝐾) = {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾}) |
71 | 70 | eleq2d 2825 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ (𝐴‘𝐾) ↔ (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾})) |
72 | | fveq2 6353 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) → (𝑡‘𝑧) = (𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) |
73 | 72 | fveq2d 6357 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) → (𝑁‘(𝑡‘𝑧)) = (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))))) |
74 | 73 | breq1d 4814 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) → ((𝑁‘(𝑡‘𝑧)) ≤ 𝐾 ↔ (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾)) |
75 | 74 | ralbidv 3124 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾)) |
76 | 75 | elrab 3504 |
. . . . . . . . 9
⊢ ((𝑃( +𝑣
‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾} ↔ ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾)) |
77 | 71, 76 | syl6bb 276 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ (𝐴‘𝐾) ↔ ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾))) |
78 | 77 | ad2antrr 764 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ (𝐴‘𝐾) ↔ ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾))) |
79 | 31, 61, 78 | 3imtr3d 282 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (((normCV‘𝑈)‘𝑥) ≤ 1 → ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾))) |
80 | | rsp 3067 |
. . . . . . . . . 10
⊢
(∀𝑡 ∈
𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾 → (𝑡 ∈ 𝑇 → (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾)) |
81 | 80 | com12 32 |
. . . . . . . . 9
⊢ (𝑡 ∈ 𝑇 → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾)) |
82 | 81 | ad2antlr 765 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾)) |
83 | | xmet0 22368 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑃𝐷𝑃) = 0) |
84 | 37, 19, 83 | sylancr 698 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑃𝐷𝑃) = 0) |
85 | 4 | rpge0d 12089 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 0 ≤ 𝑅) |
86 | 84, 85 | eqbrtrd 4826 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑃𝐷𝑃) ≤ 𝑅) |
87 | | oveq2 6822 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑃 → (𝑃𝐷𝑧) = (𝑃𝐷𝑃)) |
88 | 87 | breq1d 4814 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑃 → ((𝑃𝐷𝑧) ≤ 𝑅 ↔ (𝑃𝐷𝑃) ≤ 𝑅)) |
89 | 88 | elrab 3504 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ↔ (𝑃 ∈ 𝑋 ∧ (𝑃𝐷𝑃) ≤ 𝑅)) |
90 | 19, 86, 89 | sylanbrc 701 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑃 ∈ {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}) |
91 | 11, 90 | sseldd 3745 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 ∈ (𝐴‘𝐾)) |
92 | 91, 70 | eleqtrd 2841 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑃 ∈ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾}) |
93 | | fveq2 6353 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑃 → (𝑡‘𝑧) = (𝑡‘𝑃)) |
94 | 93 | fveq2d 6357 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑃 → (𝑁‘(𝑡‘𝑧)) = (𝑁‘(𝑡‘𝑃))) |
95 | 94 | breq1d 4814 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑃 → ((𝑁‘(𝑡‘𝑧)) ≤ 𝐾 ↔ (𝑁‘(𝑡‘𝑃)) ≤ 𝐾)) |
96 | 95 | ralbidv 3124 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑃 → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾 ↔ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑃)) ≤ 𝐾)) |
97 | 96 | elrab 3504 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝐾} ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑃)) ≤ 𝐾)) |
98 | 92, 97 | sylib 208 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑃 ∈ 𝑋 ∧ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑃)) ≤ 𝐾)) |
99 | 98 | simprd 482 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑃)) ≤ 𝐾) |
100 | 99 | r19.21bi 3070 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑁‘(𝑡‘𝑃)) ≤ 𝐾) |
101 | 100 | adantr 472 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑡‘𝑃)) ≤ 𝐾) |
102 | | ubthlem.6 |
. . . . . . . . . . . . 13
⊢ 𝑊 ∈ NrmCVec |
103 | | ubthlem.7 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑇 ⊆ (𝑈 BLnOp 𝑊)) |
104 | 103 | sselda 3744 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ (𝑈 BLnOp 𝑊)) |
105 | | eqid 2760 |
. . . . . . . . . . . . . . . . . . 19
⊢
(IndMet‘𝑊) =
(IndMet‘𝑊) |
106 | | ubthlem.4 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐽 = (MetOpen‘𝐷) |
107 | | eqid 2760 |
. . . . . . . . . . . . . . . . . . 19
⊢
(MetOpen‘(IndMet‘𝑊)) = (MetOpen‘(IndMet‘𝑊)) |
108 | | eqid 2760 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊) |
109 | 32, 105, 106, 107, 108, 17, 102 | blocn2 27993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊)))) |
110 | 106 | mopntopon 22465 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
111 | 37, 110 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐽 ∈ (TopOn‘𝑋) |
112 | | eqid 2760 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(BaseSet‘𝑊) =
(BaseSet‘𝑊) |
113 | 112, 105 | imsxmet 27877 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑊 ∈ NrmCVec →
(IndMet‘𝑊) ∈
(∞Met‘(BaseSet‘𝑊))) |
114 | 107 | mopntopon 22465 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((IndMet‘𝑊)
∈ (∞Met‘(BaseSet‘𝑊)) → (MetOpen‘(IndMet‘𝑊)) ∈
(TopOn‘(BaseSet‘𝑊))) |
115 | 102, 113,
114 | mp2b 10 |
. . . . . . . . . . . . . . . . . . 19
⊢
(MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊)) |
116 | | iscncl 21295 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧
(MetOpen‘(IndMet‘𝑊)) ∈ (TopOn‘(BaseSet‘𝑊))) → (𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈
(Clsd‘(MetOpen‘(IndMet‘𝑊)))(◡𝑡 “ 𝑥) ∈ (Clsd‘𝐽)))) |
117 | 111, 115,
116 | mp2an 710 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ (𝐽 Cn (MetOpen‘(IndMet‘𝑊))) ↔ (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈
(Clsd‘(MetOpen‘(IndMet‘𝑊)))(◡𝑡 “ 𝑥) ∈ (Clsd‘𝐽))) |
118 | 109, 117 | sylib 208 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ (𝑈 BLnOp 𝑊) → (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈
(Clsd‘(MetOpen‘(IndMet‘𝑊)))(◡𝑡 “ 𝑥) ∈ (Clsd‘𝐽))) |
119 | 104, 118 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈
(Clsd‘(MetOpen‘(IndMet‘𝑊)))(◡𝑡 “ 𝑥) ∈ (Clsd‘𝐽))) |
120 | 119 | simpld 477 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡:𝑋⟶(BaseSet‘𝑊)) |
121 | 120 | adantr 472 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝑡:𝑋⟶(BaseSet‘𝑊)) |
122 | 121, 30 | ffvelrnd 6524 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) ∈ (BaseSet‘𝑊)) |
123 | | ubth.2 |
. . . . . . . . . . . . . 14
⊢ 𝑁 =
(normCV‘𝑊) |
124 | 112, 123 | nvcl 27846 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ NrmCVec ∧ (𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ∈ ℝ) |
125 | 102, 122,
124 | sylancr 698 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ∈ ℝ) |
126 | 121, 20 | ffvelrnd 6524 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑡‘𝑃) ∈ (BaseSet‘𝑊)) |
127 | 112, 123 | nvcl 27846 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ NrmCVec ∧ (𝑡‘𝑃) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡‘𝑃)) ∈ ℝ) |
128 | 102, 126,
127 | sylancr 698 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑡‘𝑃)) ∈ ℝ) |
129 | 1 | nnred 11247 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ ℝ) |
130 | 129 | ad2antrr 764 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ ℝ) |
131 | | le2add 10722 |
. . . . . . . . . . . 12
⊢ ((((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ∈ ℝ ∧ (𝑁‘(𝑡‘𝑃)) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ∈ ℝ)) → (((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾 ∧ (𝑁‘(𝑡‘𝑃)) ≤ 𝐾) → ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃))) ≤ (𝐾 + 𝐾))) |
132 | 125, 128,
130, 130, 131 | syl22anc 1478 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾 ∧ (𝑁‘(𝑡‘𝑃)) ≤ 𝐾) → ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃))) ≤ (𝐾 + 𝐾))) |
133 | 101, 132 | mpan2d 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾 → ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃))) ≤ (𝐾 + 𝐾))) |
134 | 46 | fveq2d 6357 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑡‘((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))( −𝑣 ‘𝑈)𝑃)) = (𝑡‘(𝑅( ·𝑠OLD
‘𝑈)𝑥))) |
135 | 102 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝑊 ∈ NrmCVec) |
136 | | eqid 2760 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊) |
137 | 136, 108 | bloln 27969 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 BLnOp 𝑊)) → 𝑡 ∈ (𝑈 LnOp 𝑊)) |
138 | 17, 102, 137 | mp3an12 1563 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ (𝑈 BLnOp 𝑊) → 𝑡 ∈ (𝑈 LnOp 𝑊)) |
139 | 104, 138 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ (𝑈 LnOp 𝑊)) |
140 | 139 | adantr 472 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝑡 ∈ (𝑈 LnOp 𝑊)) |
141 | | eqid 2760 |
. . . . . . . . . . . . . . . . 17
⊢ (
−𝑣 ‘𝑊) = ( −𝑣
‘𝑊) |
142 | 24, 41, 141, 136 | lnosub 27944 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 LnOp 𝑊)) ∧ ((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋)) → (𝑡‘((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))( −𝑣 ‘𝑈)𝑃)) = ((𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))( −𝑣 ‘𝑊)(𝑡‘𝑃))) |
143 | 18, 135, 140, 30, 20, 142 | syl32anc 1485 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑡‘((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))( −𝑣 ‘𝑈)𝑃)) = ((𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))( −𝑣 ‘𝑊)(𝑡‘𝑃))) |
144 | | eqid 2760 |
. . . . . . . . . . . . . . . . 17
⊢ (
·𝑠OLD ‘𝑊) = ( ·𝑠OLD
‘𝑊) |
145 | 24, 25, 144, 136 | lnomul 27945 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑡 ∈ (𝑈 LnOp 𝑊)) ∧ (𝑅 ∈ ℂ ∧ 𝑥 ∈ 𝑋)) → (𝑡‘(𝑅( ·𝑠OLD
‘𝑈)𝑥)) = (𝑅( ·𝑠OLD
‘𝑊)(𝑡‘𝑥))) |
146 | 18, 135, 140, 22, 23, 145 | syl32anc 1485 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑡‘(𝑅( ·𝑠OLD
‘𝑈)𝑥)) = (𝑅( ·𝑠OLD
‘𝑊)(𝑡‘𝑥))) |
147 | 134, 143,
146 | 3eqtr3d 2802 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))( −𝑣 ‘𝑊)(𝑡‘𝑃)) = (𝑅( ·𝑠OLD
‘𝑊)(𝑡‘𝑥))) |
148 | 147 | fveq2d 6357 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑁‘((𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))( −𝑣 ‘𝑊)(𝑡‘𝑃))) = (𝑁‘(𝑅( ·𝑠OLD
‘𝑊)(𝑡‘𝑥)))) |
149 | 120 | ffvelrnda 6523 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑡‘𝑥) ∈ (BaseSet‘𝑊)) |
150 | 112, 144,
123 | nvsge0 27849 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ NrmCVec ∧ (𝑅 ∈ ℝ ∧ 0 ≤
𝑅) ∧ (𝑡‘𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑅( ·𝑠OLD
‘𝑊)(𝑡‘𝑥))) = (𝑅 · (𝑁‘(𝑡‘𝑥)))) |
151 | 135, 49, 149, 150 | syl3anc 1477 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑅( ·𝑠OLD
‘𝑊)(𝑡‘𝑥))) = (𝑅 · (𝑁‘(𝑡‘𝑥)))) |
152 | 148, 151 | eqtrd 2794 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑁‘((𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))( −𝑣 ‘𝑊)(𝑡‘𝑃))) = (𝑅 · (𝑁‘(𝑡‘𝑥)))) |
153 | 112, 141,
123 | nvmtri 27856 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ NrmCVec ∧ (𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥))) ∈ (BaseSet‘𝑊) ∧ (𝑡‘𝑃) ∈ (BaseSet‘𝑊)) → (𝑁‘((𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))( −𝑣 ‘𝑊)(𝑡‘𝑃))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃)))) |
154 | 135, 122,
126, 153 | syl3anc 1477 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑁‘((𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))( −𝑣 ‘𝑊)(𝑡‘𝑃))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃)))) |
155 | 152, 154 | eqbrtrrd 4828 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑅 · (𝑁‘(𝑡‘𝑥))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃)))) |
156 | 21 | rpred 12085 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → 𝑅 ∈ ℝ) |
157 | 112, 123 | nvcl 27846 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ NrmCVec ∧ (𝑡‘𝑥) ∈ (BaseSet‘𝑊)) → (𝑁‘(𝑡‘𝑥)) ∈ ℝ) |
158 | 102, 149,
157 | sylancr 698 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑡‘𝑥)) ∈ ℝ) |
159 | 156, 158 | remulcld 10282 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝑅 · (𝑁‘(𝑡‘𝑥))) ∈ ℝ) |
160 | 125, 128 | readdcld 10281 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃))) ∈ ℝ) |
161 | 3 | rpred 12085 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾 + 𝐾) ∈ ℝ) |
162 | 161 | ad2antrr 764 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (𝐾 + 𝐾) ∈ ℝ) |
163 | | letr 10343 |
. . . . . . . . . . . 12
⊢ (((𝑅 · (𝑁‘(𝑡‘𝑥))) ∈ ℝ ∧ ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃))) ∈ ℝ ∧ (𝐾 + 𝐾) ∈ ℝ) → (((𝑅 · (𝑁‘(𝑡‘𝑥))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃))) ∧ ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃))) ≤ (𝐾 + 𝐾)) → (𝑅 · (𝑁‘(𝑡‘𝑥))) ≤ (𝐾 + 𝐾))) |
164 | 159, 160,
162, 163 | syl3anc 1477 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (((𝑅 · (𝑁‘(𝑡‘𝑥))) ≤ ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃))) ∧ ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃))) ≤ (𝐾 + 𝐾)) → (𝑅 · (𝑁‘(𝑡‘𝑥))) ≤ (𝐾 + 𝐾))) |
165 | 155, 164 | mpand 713 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) + (𝑁‘(𝑡‘𝑃))) ≤ (𝐾 + 𝐾) → (𝑅 · (𝑁‘(𝑡‘𝑥))) ≤ (𝐾 + 𝐾))) |
166 | 133, 165 | syld 47 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾 → (𝑅 · (𝑁‘(𝑡‘𝑥))) ≤ (𝐾 + 𝐾))) |
167 | 158, 162,
21 | lemuldiv2d 12135 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑅 · (𝑁‘(𝑡‘𝑥))) ≤ (𝐾 + 𝐾) ↔ (𝑁‘(𝑡‘𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅))) |
168 | 166, 167 | sylibd 229 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → ((𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡‘𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅))) |
169 | 82, 168 | syld 47 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾 → (𝑁‘(𝑡‘𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅))) |
170 | 169 | adantld 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (((𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)) ∈ 𝑋 ∧ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘(𝑃( +𝑣 ‘𝑈)(𝑅( ·𝑠OLD
‘𝑈)𝑥)))) ≤ 𝐾) → (𝑁‘(𝑡‘𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅))) |
171 | 79, 170 | syld 47 |
. . . . 5
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑥 ∈ 𝑋) → (((normCV‘𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡‘𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅))) |
172 | 171 | ralrimiva 3104 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ∀𝑥 ∈ 𝑋 (((normCV‘𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡‘𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅))) |
173 | 5 | rpxrd 12086 |
. . . . . 6
⊢ (𝜑 → ((𝐾 + 𝐾) / 𝑅) ∈
ℝ*) |
174 | 173 | adantr 472 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐾 + 𝐾) / 𝑅) ∈
ℝ*) |
175 | | eqid 2760 |
. . . . . 6
⊢ (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊) |
176 | 24, 112, 42, 123, 175, 17, 102 | nmoubi 27957 |
. . . . 5
⊢ ((𝑡:𝑋⟶(BaseSet‘𝑊) ∧ ((𝐾 + 𝐾) / 𝑅) ∈ ℝ*) →
(((𝑈 normOpOLD
𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅) ↔ ∀𝑥 ∈ 𝑋 (((normCV‘𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡‘𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))) |
177 | 120, 174,
176 | syl2anc 696 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅) ↔ ∀𝑥 ∈ 𝑋 (((normCV‘𝑈)‘𝑥) ≤ 1 → (𝑁‘(𝑡‘𝑥)) ≤ ((𝐾 + 𝐾) / 𝑅)))) |
178 | 172, 177 | mpbird 247 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅)) |
179 | 178 | ralrimiva 3104 |
. 2
⊢ (𝜑 → ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅)) |
180 | | breq2 4808 |
. . . 4
⊢ (𝑑 = ((𝐾 + 𝐾) / 𝑅) → (((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 ↔ ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅))) |
181 | 180 | ralbidv 3124 |
. . 3
⊢ (𝑑 = ((𝐾 + 𝐾) / 𝑅) → (∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑 ↔ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅))) |
182 | 181 | rspcev 3449 |
. 2
⊢ ((((𝐾 + 𝐾) / 𝑅) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ ((𝐾 + 𝐾) / 𝑅)) → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑) |
183 | 6, 179, 182 | syl2anc 696 |
1
⊢ (𝜑 → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑) |