![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ubicc2 | Structured version Visualization version GIF version |
Description: The upper bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) |
Ref | Expression |
---|---|
ubicc2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1132 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ*) | |
2 | simp3 1133 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
3 | xrleid 12196 | . . 3 ⊢ (𝐵 ∈ ℝ* → 𝐵 ≤ 𝐵) | |
4 | 3 | 3ad2ant2 1129 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ≤ 𝐵) |
5 | elicc1 12432 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) | |
6 | 5 | 3adant3 1127 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) |
7 | 1, 2, 4, 6 | mpbir3and 1428 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 ∈ wcel 2139 class class class wbr 4804 (class class class)co 6814 ℝ*cxr 10285 ≤ cle 10287 [,]cicc 12391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-pre-lttri 10222 ax-pre-lttrn 10223 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-icc 12395 |
This theorem is referenced by: xnn0xrge0 12538 iccpnfcnv 22964 oprpiece1res2 22972 ivthlem2 23441 ivth2 23444 ivthle 23445 ivthle2 23446 dyadmaxlem 23585 cmvth 23973 mvth 23974 dvlip 23975 c1liplem1 23978 dvgt0lem1 23984 lhop1lem 23995 dvcnvrelem1 23999 dvcvx 24002 dvfsumle 24003 dvfsumge 24004 dvfsumabs 24005 dvfsumlem2 24009 ftc2 24026 ftc2ditglem 24027 itgparts 24029 itgsubstlem 24030 efcvx 24422 pige3 24489 logccv 24629 loglesqrt 24719 pntlem3 25518 eliccioo 29969 xrge0iifcnv 30309 lmxrge0 30328 esumpinfval 30465 hashf2 30476 esumcvg 30478 ftc2re 31006 cvmliftlem7 31601 cvmliftlem10 31604 ivthALT 32657 ftc2nc 33825 areacirc 33836 itgpowd 38320 iccintsng 40270 pnfel0pnf 40275 limcicciooub 40390 icccncfext 40621 dvbdfbdioolem1 40664 itgsin0pilem1 40686 itgcoscmulx 40706 itgsincmulx 40711 itgsubsticc 40713 fourierdlem20 40865 fourierdlem54 40898 fourierdlem64 40908 fourierdlem81 40925 fourierdlem102 40946 fourierdlem103 40947 fourierdlem104 40948 fourierdlem114 40958 etransclem46 41018 |
Copyright terms: Public domain | W3C validator |