![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ubelsupr | Structured version Visualization version GIF version |
Description: If U belongs to A and U is an upper bound, then U is the sup of A. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
ubelsupr | ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → 𝑈 = sup(𝐴, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1131 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → 𝐴 ⊆ ℝ) | |
2 | simp2 1132 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → 𝑈 ∈ 𝐴) | |
3 | ne0i 4064 | . . . . 5 ⊢ (𝑈 ∈ 𝐴 → 𝐴 ≠ ∅) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → 𝐴 ≠ ∅) |
5 | 1, 2 | sseldd 3745 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → 𝑈 ∈ ℝ) |
6 | simp3 1133 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) | |
7 | breq2 4808 | . . . . . . 7 ⊢ (𝑦 = 𝑈 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑈)) | |
8 | 7 | ralbidv 3124 | . . . . . 6 ⊢ (𝑦 = 𝑈 → (∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈)) |
9 | 8 | rspcev 3449 | . . . . 5 ⊢ ((𝑈 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑦) |
10 | 5, 6, 9 | syl2anc 696 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑦) |
11 | 1, 4, 10 | 3jca 1123 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑦)) |
12 | suprub 11176 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝑈 ∈ 𝐴) → 𝑈 ≤ sup(𝐴, ℝ, < )) | |
13 | 11, 2, 12 | syl2anc 696 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → 𝑈 ≤ sup(𝐴, ℝ, < )) |
14 | suprleub 11181 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝑈 ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ 𝑈 ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈)) | |
15 | 11, 5, 14 | syl2anc 696 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → (sup(𝐴, ℝ, < ) ≤ 𝑈 ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈)) |
16 | 6, 15 | mpbird 247 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → sup(𝐴, ℝ, < ) ≤ 𝑈) |
17 | suprcl 11175 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑦) → sup(𝐴, ℝ, < ) ∈ ℝ) | |
18 | 11, 17 | syl 17 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → sup(𝐴, ℝ, < ) ∈ ℝ) |
19 | 5, 18 | letri3d 10371 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → (𝑈 = sup(𝐴, ℝ, < ) ↔ (𝑈 ≤ sup(𝐴, ℝ, < ) ∧ sup(𝐴, ℝ, < ) ≤ 𝑈))) |
20 | 13, 16, 19 | mpbir2and 995 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → 𝑈 = sup(𝐴, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∀wral 3050 ∃wrex 3051 ⊆ wss 3715 ∅c0 4058 class class class wbr 4804 supcsup 8511 ℝcr 10127 < clt 10266 ≤ cle 10267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-sup 8513 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 |
This theorem is referenced by: cncmpmax 39690 |
Copyright terms: Public domain | W3C validator |