Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.1c Structured version   Visualization version   GIF version

Theorem tz9.1c 8644
 Description: Alternate expression for the existence of transitive closures tz9.1 8643: the intersection of all transitive sets containing 𝐴 is a set. (Contributed by Mario Carneiro, 22-Mar-2013.)
Hypothesis
Ref Expression
tz9.1.1 𝐴 ∈ V
Assertion
Ref Expression
tz9.1c {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V
Distinct variable group:   𝑥,𝐴

Proof of Theorem tz9.1c
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tz9.1.1 . . . . 5 𝐴 ∈ V
2 eqid 2651 . . . . 5 (rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω) = (rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)
3 eqid 2651 . . . . 5 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) = 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)
41, 2, 3trcl 8642 . . . 4 (𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ ∀𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ⊆ 𝑥))
5 3simpa 1078 . . . 4 ((𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ ∀𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ⊆ 𝑥)) → (𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)))
6 omex 8578 . . . . . 6 ω ∈ V
7 fvex 6239 . . . . . 6 ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∈ V
86, 7iunex 7189 . . . . 5 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∈ V
9 sseq2 3660 . . . . . 6 (𝑥 = 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) → (𝐴𝑥𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)))
10 treq 4791 . . . . . 6 (𝑥 = 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) → (Tr 𝑥 ↔ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)))
119, 10anbi12d 747 . . . . 5 (𝑥 = 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) → ((𝐴𝑥 ∧ Tr 𝑥) ↔ (𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤))))
128, 11spcev 3331 . . . 4 ((𝐴 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘𝑤)) → ∃𝑥(𝐴𝑥 ∧ Tr 𝑥))
134, 5, 12mp2b 10 . . 3 𝑥(𝐴𝑥 ∧ Tr 𝑥)
14 abn0 3987 . . 3 ({𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ≠ ∅ ↔ ∃𝑥(𝐴𝑥 ∧ Tr 𝑥))
1513, 14mpbir 221 . 2 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ≠ ∅
16 intex 4850 . 2 ({𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ≠ ∅ ↔ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V)
1715, 16mpbi 220 1 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054  ∀wal 1521   = wceq 1523  ∃wex 1744   ∈ wcel 2030  {cab 2637   ≠ wne 2823  Vcvv 3231   ∪ cun 3605   ⊆ wss 3607  ∅c0 3948  ∪ cuni 4468  ∩ cint 4507  ∪ ciun 4552   ↦ cmpt 4762  Tr wtr 4785   ↾ cres 5145  ‘cfv 5926  ωcom 7107  reccrdg 7550 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551 This theorem is referenced by:  tcvalg  8652
 Copyright terms: Public domain W3C validator