![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz9.1c | Structured version Visualization version GIF version |
Description: Alternate expression for the existence of transitive closures tz9.1 8643: the intersection of all transitive sets containing 𝐴 is a set. (Contributed by Mario Carneiro, 22-Mar-2013.) |
Ref | Expression |
---|---|
tz9.1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tz9.1c | ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz9.1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | eqid 2651 | . . . . 5 ⊢ (rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω) = (rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω) | |
3 | eqid 2651 | . . . . 5 ⊢ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) = ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) | |
4 | 1, 2, 3 | trcl 8642 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ ∀𝑥((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ⊆ 𝑥)) |
5 | 3simpa 1078 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ ∀𝑥((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ⊆ 𝑥)) → (𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤))) | |
6 | omex 8578 | . . . . . 6 ⊢ ω ∈ V | |
7 | fvex 6239 | . . . . . 6 ⊢ ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∈ V | |
8 | 6, 7 | iunex 7189 | . . . . 5 ⊢ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∈ V |
9 | sseq2 3660 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤))) | |
10 | treq 4791 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) → (Tr 𝑥 ↔ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤))) | |
11 | 9, 10 | anbi12d 747 | . . . . 5 ⊢ (𝑥 = ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) ↔ (𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤)))) |
12 | 8, 11 | spcev 3331 | . . . 4 ⊢ ((𝐴 ⊆ ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤) ∧ Tr ∪ 𝑤 ∈ ω ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω)‘𝑤)) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥)) |
13 | 4, 5, 12 | mp2b 10 | . . 3 ⊢ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥) |
14 | abn0 3987 | . . 3 ⊢ ({𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ≠ ∅ ↔ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥)) | |
15 | 13, 14 | mpbir 221 | . 2 ⊢ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ≠ ∅ |
16 | intex 4850 | . 2 ⊢ ({𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ≠ ∅ ↔ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V) | |
17 | 15, 16 | mpbi 220 | 1 ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 ∀wal 1521 = wceq 1523 ∃wex 1744 ∈ wcel 2030 {cab 2637 ≠ wne 2823 Vcvv 3231 ∪ cun 3605 ⊆ wss 3607 ∅c0 3948 ∪ cuni 4468 ∩ cint 4507 ∪ ciun 4552 ↦ cmpt 4762 Tr wtr 4785 ↾ cres 5145 ‘cfv 5926 ωcom 7107 reccrdg 7550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 |
This theorem is referenced by: tcvalg 8652 |
Copyright terms: Public domain | W3C validator |