MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.1 Structured version   Visualization version   GIF version

Theorem tz9.1 8768
Description: Every set has a transitive closure (the smallest transitive extension). Theorem 9.1 of [TakeutiZaring] p. 73. See trcl 8767 for an explicit expression for the transitive closure. Apparently open problems are whether this theorem can be proved without the Axiom of Infinity; if not, then whether it implies Infinity; and if not, what is the "property" that Infinity has that the other axioms don't have that is weaker than Infinity itself?

(Added 22-Mar-2011) The following article seems to answer the first question, that it can't be proved without Infinity, in the affirmative: Mancini, Antonella and Zambella, Domenico (2001). "A note on recursive models of set theories." Notre Dame Journal of Formal Logic, 42(2):109-115. (Thanks to Scott Fenton.) (Contributed by NM, 15-Sep-2003.)

Hypothesis
Ref Expression
tz9.1.1 𝐴 ∈ V
Assertion
Ref Expression
tz9.1 𝑥(𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem tz9.1
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tz9.1.1 . . 3 𝐴 ∈ V
2 eqid 2770 . . 3 (rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω) = (rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)
3 eqid 2770 . . 3 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧)
41, 2, 3trcl 8767 . 2 (𝐴 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ Tr 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦))
5 omex 8703 . . . 4 ω ∈ V
6 fvex 6342 . . . 4 ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ∈ V
75, 6iunex 7293 . . 3 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ∈ V
8 sseq2 3774 . . . 4 (𝑥 = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) → (𝐴𝑥𝐴 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧)))
9 treq 4890 . . . 4 (𝑥 = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) → (Tr 𝑥 ↔ Tr 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧)))
10 sseq1 3773 . . . . . 6 (𝑥 = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) → (𝑥𝑦 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦))
1110imbi2d 329 . . . . 5 (𝑥 = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) → (((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦) ↔ ((𝐴𝑦 ∧ Tr 𝑦) → 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦)))
1211albidv 2000 . . . 4 (𝑥 = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) → (∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦) ↔ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦)))
138, 9, 123anbi123d 1546 . . 3 (𝑥 = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) → ((𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) ↔ (𝐴 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ Tr 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦))))
147, 13spcev 3449 . 2 ((𝐴 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ Tr 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦)) → ∃𝑥(𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦)))
154, 14ax-mp 5 1 𝑥(𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070  wal 1628   = wceq 1630  wex 1851  wcel 2144  Vcvv 3349  cun 3719  wss 3721   cuni 4572   ciun 4652  cmpt 4861  Tr wtr 4884  cres 5251  cfv 6031  ωcom 7211  reccrdg 7657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658
This theorem is referenced by:  epfrs  8770
  Copyright terms: Public domain W3C validator