![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz9.1 | Structured version Visualization version GIF version |
Description: Every set has a
transitive closure (the smallest transitive extension).
Theorem 9.1 of [TakeutiZaring] p.
73. See trcl 8767 for an explicit
expression for the transitive closure. Apparently open problems are
whether this theorem can be proved without the Axiom of Infinity; if
not, then whether it implies Infinity; and if not, what is the
"property" that Infinity has that the other axioms don't have
that is
weaker than Infinity itself?
(Added 22-Mar-2011) The following article seems to answer the first question, that it can't be proved without Infinity, in the affirmative: Mancini, Antonella and Zambella, Domenico (2001). "A note on recursive models of set theories." Notre Dame Journal of Formal Logic, 42(2):109-115. (Thanks to Scott Fenton.) (Contributed by NM, 15-Sep-2003.) |
Ref | Expression |
---|---|
tz9.1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tz9.1 | ⊢ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz9.1.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | eqid 2770 | . . 3 ⊢ (rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω) = (rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω) | |
3 | eqid 2770 | . . 3 ⊢ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) | |
4 | 1, 2, 3 | trcl 8767 | . 2 ⊢ (𝐴 ⊆ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ Tr ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦)) |
5 | omex 8703 | . . . 4 ⊢ ω ∈ V | |
6 | fvex 6342 | . . . 4 ⊢ ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∈ V | |
7 | 5, 6 | iunex 7293 | . . 3 ⊢ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∈ V |
8 | sseq2 3774 | . . . 4 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧))) | |
9 | treq 4890 | . . . 4 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → (Tr 𝑥 ↔ Tr ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧))) | |
10 | sseq1 3773 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → (𝑥 ⊆ 𝑦 ↔ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦)) | |
11 | 10 | imbi2d 329 | . . . . 5 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → (((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦) ↔ ((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦))) |
12 | 11 | albidv 2000 | . . . 4 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → (∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦) ↔ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦))) |
13 | 8, 9, 12 | 3anbi123d 1546 | . . 3 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) ↔ (𝐴 ⊆ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ Tr ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦)))) |
14 | 7, 13 | spcev 3449 | . 2 ⊢ ((𝐴 ⊆ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ Tr ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦)) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦))) |
15 | 4, 14 | ax-mp 5 | 1 ⊢ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 ∀wal 1628 = wceq 1630 ∃wex 1851 ∈ wcel 2144 Vcvv 3349 ∪ cun 3719 ⊆ wss 3721 ∪ cuni 4572 ∪ ciun 4652 ↦ cmpt 4861 Tr wtr 4884 ↾ cres 5251 ‘cfv 6031 ωcom 7211 reccrdg 7657 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-om 7212 df-wrecs 7558 df-recs 7620 df-rdg 7658 |
This theorem is referenced by: epfrs 8770 |
Copyright terms: Public domain | W3C validator |