![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz7.49c | Structured version Visualization version GIF version |
Description: Corollary of Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 19-Jan-2013.) |
Ref | Expression |
---|---|
tz7.49c.1 | ⊢ 𝐹 Fn On |
Ref | Expression |
---|---|
tz7.49c | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz7.49c.1 | . . 3 ⊢ 𝐹 Fn On | |
2 | biid 251 | . . 3 ⊢ (∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥))) ↔ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) | |
3 | 1, 2 | tz7.49 7697 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) → ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥))) |
4 | 3simpc 1144 | . . . 4 ⊢ ((∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥)) → ((𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥))) | |
5 | onss 7143 | . . . . . . . . 9 ⊢ (𝑥 ∈ On → 𝑥 ⊆ On) | |
6 | fnssres 6153 | . . . . . . . . 9 ⊢ ((𝐹 Fn On ∧ 𝑥 ⊆ On) → (𝐹 ↾ 𝑥) Fn 𝑥) | |
7 | 1, 5, 6 | sylancr 698 | . . . . . . . 8 ⊢ (𝑥 ∈ On → (𝐹 ↾ 𝑥) Fn 𝑥) |
8 | df-ima 5267 | . . . . . . . . . 10 ⊢ (𝐹 “ 𝑥) = ran (𝐹 ↾ 𝑥) | |
9 | 8 | eqeq1i 2753 | . . . . . . . . 9 ⊢ ((𝐹 “ 𝑥) = 𝐴 ↔ ran (𝐹 ↾ 𝑥) = 𝐴) |
10 | 9 | biimpi 206 | . . . . . . . 8 ⊢ ((𝐹 “ 𝑥) = 𝐴 → ran (𝐹 ↾ 𝑥) = 𝐴) |
11 | 7, 10 | anim12i 591 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ (𝐹 “ 𝑥) = 𝐴) → ((𝐹 ↾ 𝑥) Fn 𝑥 ∧ ran (𝐹 ↾ 𝑥) = 𝐴)) |
12 | 11 | anim1i 593 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ (𝐹 “ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥)) → (((𝐹 ↾ 𝑥) Fn 𝑥 ∧ ran (𝐹 ↾ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥))) |
13 | dff1o2 6291 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 ↔ ((𝐹 ↾ 𝑥) Fn 𝑥 ∧ Fun ◡(𝐹 ↾ 𝑥) ∧ ran (𝐹 ↾ 𝑥) = 𝐴)) | |
14 | 3anan32 1083 | . . . . . . 7 ⊢ (((𝐹 ↾ 𝑥) Fn 𝑥 ∧ Fun ◡(𝐹 ↾ 𝑥) ∧ ran (𝐹 ↾ 𝑥) = 𝐴) ↔ (((𝐹 ↾ 𝑥) Fn 𝑥 ∧ ran (𝐹 ↾ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥))) | |
15 | 13, 14 | bitri 264 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴 ↔ (((𝐹 ↾ 𝑥) Fn 𝑥 ∧ ran (𝐹 ↾ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥))) |
16 | 12, 15 | sylibr 224 | . . . . 5 ⊢ (((𝑥 ∈ On ∧ (𝐹 “ 𝑥) = 𝐴) ∧ Fun ◡(𝐹 ↾ 𝑥)) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
17 | 16 | expl 649 | . . . 4 ⊢ (𝑥 ∈ On → (((𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥)) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴)) |
18 | 4, 17 | syl5 34 | . . 3 ⊢ (𝑥 ∈ On → ((∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥)) → (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴)) |
19 | 18 | reximia 3135 | . 2 ⊢ (∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴 ∖ (𝐹 “ 𝑦)) ≠ ∅ ∧ (𝐹 “ 𝑥) = 𝐴 ∧ Fun ◡(𝐹 ↾ 𝑥)) → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
20 | 3, 19 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1620 ∈ wcel 2127 ≠ wne 2920 ∀wral 3038 ∃wrex 3039 ∖ cdif 3700 ⊆ wss 3703 ∅c0 4046 ◡ccnv 5253 ran crn 5255 ↾ cres 5256 “ cima 5257 Oncon0 5872 Fun wfun 6031 Fn wfn 6032 –1-1-onto→wf1o 6036 ‘cfv 6037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pr 5043 ax-un 7102 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-ord 5875 df-on 5876 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 |
This theorem is referenced by: dfac8alem 9013 dnnumch1 38085 |
Copyright terms: Public domain | W3C validator |