![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz7.44-1 | Structured version Visualization version GIF version |
Description: The value of 𝐹 at ∅. Part 1 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
tz7.44.1 | ⊢ 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥))))) |
tz7.44.2 | ⊢ (𝑦 ∈ 𝑋 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦))) |
tz7.44-1.3 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tz7.44-1 | ⊢ (∅ ∈ 𝑋 → (𝐹‘∅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6332 | . . . 4 ⊢ (𝑦 = ∅ → (𝐹‘𝑦) = (𝐹‘∅)) | |
2 | reseq2 5529 | . . . . . 6 ⊢ (𝑦 = ∅ → (𝐹 ↾ 𝑦) = (𝐹 ↾ ∅)) | |
3 | res0 5538 | . . . . . 6 ⊢ (𝐹 ↾ ∅) = ∅ | |
4 | 2, 3 | syl6eq 2821 | . . . . 5 ⊢ (𝑦 = ∅ → (𝐹 ↾ 𝑦) = ∅) |
5 | 4 | fveq2d 6336 | . . . 4 ⊢ (𝑦 = ∅ → (𝐺‘(𝐹 ↾ 𝑦)) = (𝐺‘∅)) |
6 | 1, 5 | eqeq12d 2786 | . . 3 ⊢ (𝑦 = ∅ → ((𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦)) ↔ (𝐹‘∅) = (𝐺‘∅))) |
7 | tz7.44.2 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦))) | |
8 | 6, 7 | vtoclga 3423 | . 2 ⊢ (∅ ∈ 𝑋 → (𝐹‘∅) = (𝐺‘∅)) |
9 | 0ex 4924 | . . 3 ⊢ ∅ ∈ V | |
10 | iftrue 4231 | . . . 4 ⊢ (𝑥 = ∅ → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥)))) = 𝐴) | |
11 | tz7.44.1 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥))))) | |
12 | tz7.44-1.3 | . . . 4 ⊢ 𝐴 ∈ V | |
13 | 10, 11, 12 | fvmpt 6424 | . . 3 ⊢ (∅ ∈ V → (𝐺‘∅) = 𝐴) |
14 | 9, 13 | ax-mp 5 | . 2 ⊢ (𝐺‘∅) = 𝐴 |
15 | 8, 14 | syl6eq 2821 | 1 ⊢ (∅ ∈ 𝑋 → (𝐹‘∅) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ∅c0 4063 ifcif 4225 ∪ cuni 4574 ↦ cmpt 4863 dom cdm 5249 ran crn 5250 ↾ cres 5251 Lim wlim 5867 ‘cfv 6031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-res 5261 df-iota 5994 df-fun 6033 df-fv 6039 |
This theorem is referenced by: rdg0 7670 |
Copyright terms: Public domain | W3C validator |